Over time, antimicrobial agents are losing their credibility in curbing infections due to the development of resistant pathogen strains. The resistant strains have proven to invade living beings and cause various diseases, leading to deaths at an alarming rate. Acinetobacter baumannii is one such pathogen, and to target it through enzyme inhibition, Dihydropteroate synthase enzyme's active site is virtually screened for antimicrobial agents against in-house libraries of natural molecules from medicinally important plants and Agaricus spp. fungus. Two ligands (MSID_000725 and CID_291096) are found to be suitable candidate inhibitors after various screening through Lipinski's based drug-like parameters, pharmacokinetic parameters, toxicity parameters and structural parameters which comprised of estimated free energy of binding, ligand efficiency and interaction analysis. DHPS enzyme catalyses the condensation reaction of hydroxymethyl-7, 8-dihydropterin pyrophosphate and para-aminobenzoic acid in the folic acid synthesis pathway in bacterial cells. The Complexes of the DHPS enzyme and ligands are validated through in silico studies, including MD simulations and MM/PBSA based binding free energy studies. The Complex DHPS-MSID_000725 and DHPS-CID_291096 were analysed for global dynamics attributes such as RMSD, RMSF, Rg, SASA and essential dynamics through PCA. The complexes were subjected to MM/PBSA based binding free energy analysis and were found to have binding free energy of -25.18 kcal/mol (DHPS-MSID_000725) and - 4.90 kcal/mol (DHPS-CID_291096).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883060 | PMC |
http://dx.doi.org/10.1038/s41598-025-90946-9 | DOI Listing |
ACS Nano
March 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
To surmount the shortcomings of powder-based catalysts and small electrode sizes, the development of meter-scale integrated electrode materials is essential for practical electrocatalytic applications, which requires fine control over the effective surface grafting of catalytic active sites on large-size electrodes as well as addressing the challenge of balancing cost-effective and large-scale manufacturing with highly active and stable operation. Herein, we report a low-cost, facile, and scalable method for directly constructing meter-scale single-molecule-integrated catalytic electrodes using commercially available, flexible, and size-tailored conductive carbon textiles (e.g.
View Article and Find Full Text PDFSmall
March 2025
Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
The design of highly efficient photocatalysts to photoreduce nitrogen (N) to ammonia (NH) under mild conditions is extremely challenging. In this work, various molar ratio of molybdenum (Mo) is incorporated into BiOCl via a hydrothermal process. The resulting Mo-doped BiOCl exhibits remarkable solar-driven activity for N photo fixation without any scavengers or sacrificial agents.
View Article and Find Full Text PDFChem Rec
March 2025
University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium.
Photosynthesis in plants has inspired photochemical reactions in organic chemistry. Synthetic organic chemists always seek cost-effective, operationally simple, averting the use of toxic and difficult-to-remove metallic catalysts, atom economical, and high product purity in organic reactions. In the last few decades, the use of light as a catalyst in organic reactions has increased exponentially as literature has exploded with examples, particularly by using toxic and expensive metal complexes, photosensitizers like organic dyes, hypervalent iodine, or by using inorganic semiconductors.
View Article and Find Full Text PDFSmall
March 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.
View Article and Find Full Text PDFAdv Mater
March 2025
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
Anode-free lithium metal batteries are promising toward high-energy-density power sources with low-cost, but their practical applications are challenged by poor cycling stability and low rate capability. Herein, a shape change-free and lithium-free anode that well controls the reversible Li plating-stripping is reported, which is composed of a highly-ordered hollow ZnO matrix with a surface-coated lithium-phosphorus-oxynitride (LiPON) layer. The ZnO matrix supplies sufficient cavities and lithiophilic sites to facilitate uniform Li plating/stripping within the hollow cavity, while the LiPON layer maintains stable solid-electrolyte interphase from mechanical and electrochemical damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!