Research in industrial grid energy management is essential due to increasing energy demands, rising costs, and the integration of renewable sources. Efficient energy management can reduce operational costs, enhance grid stability, and optimize resource allocation. Addressing these challenges requires advanced techniques to balance supply, demand, and storage in dynamic industrial settings. In this study, a new hybrid algorithm is used for system modelling and low-cost, optimal management of Micro Grid (MG) networked systems. Optimizing micro-sources to reduce electricity production costs through hourly, day-ahead, and real-time scheduling was the process' primary goal.This research proposes a Quadratic Interpolation and New Local Search for Greylag Goose Optimisation (QI-NLS-G2O) and Gaussian Radius Zone Perceptron Net (GRZPNet) technique based energy management scheme for Multi-Energy Microgrids (MEMG) to help the Energy Management System (EMS) formulate optimal dispatching strategies under Renewable Energy Source (RES) uncertainty. To precisely represent the MEMG's operational state, the scheduling process incorporates an off-design performance model for energy conversion devices. Utilising MG inputs such as Wind Turbines (WT), Photovoltaic arrays (PV), and battery storage with associated cost functions, the GRZPNet learning phase based on QI-NLS-G2O is utilised to forecast load demand. The QI-NLS-G2O optimises the MG configuration according to the load demand. The MATLAB/Simulink working platform is used to implement the suggested hybrid technique, which is then contrasted with alternative approaches to solving problems.The proposed model significantly improves dispatching accuracy, reducing RES uncertainty impacts by approximately 15% and enhancing MEMG performance efficiency by up to 20% in simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882841PMC
http://dx.doi.org/10.1038/s41598-025-90062-8DOI Listing

Publication Analysis

Top Keywords

energy management
20
multi-energy microgrids
8
energy
8
renewable energy
8
energy source
8
res uncertainty
8
load demand
8
management
6
optimal energy
4
management multi-energy
4

Similar Publications

Mechanical and Light Activation of Materials for Chemical Production.

Adv Mater

March 2025

Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur.

View Article and Find Full Text PDF

Tetrahedrite Nanocomposites for High Performance Thermoelectrics.

Nanomaterials (Basel)

February 2025

Centro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, Portugal.

Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed.

View Article and Find Full Text PDF

Thermal Properties and Features of Nanofluids.

Nanomaterials (Basel)

February 2025

IDMEC, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.

Nanofluids have emerged as an advanced media in many applications, particularly thermal management and energy efficiency applications, with extensive research focusing on their thermophysical properties and thermal performances [...

View Article and Find Full Text PDF

Bleeding management in pelvic trauma: state of the art.

Curr Opin Anaesthesiol

February 2025

Department of Orthopaedics and Trauma Surgery.

Purpose Of Review: Bleeding complications from pelvic injuries occur after high-energy trauma as well as after low-energy trauma in elderly patients and are the main contributors to mortality. Demographic changes necessitate focussing on both entities and targeted therapies throughout the course of management.

Recent Findings: This article reviews the recent evidence and expertise on bleeding management for haemodynamically unstable patients with pelvic fractures with insights from prehospital care to trends in resuscitation and endovascular techniques and revival of older strategies, to challenges of definitive treatment.

View Article and Find Full Text PDF

Introduction: A densitometric diagnosis of osteoporosis qualifies patients to a diagnostic-therapeutic process, but densitometric evaluation may not be sufficient for osteopaenic patients. Therefore, it is essential to assess osteoporosis risk factors, fracture history, and 10-year fracture risk, and classify patients into low-, medium-, high-, or very high-risk categories. In our study, we aimed to assess the risk of fractures in patients with newly diagnosed osteopaenia and determine the percentage of patients at high and very high risk of fracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!