The specialization of cells is a hallmark of complex multicellularity. Cell differentiation enables the emergence of specialized cell types that carry out separate functions previously executed by a multifunctional ancestor cell. One view about the origin of cell differentiation is that it first occurred randomly in genetically identical cells exposed to the same life history environment. Under these conditions, differentiation trajectories producing more offspring could be favored by natural selection; yet, how dynamic variation in differentiation probabilities can affect the evolution of differentiation patterns is unclear. We develop a theoretical model to investigate the effect of dynamic-stage-dependent-cell differentiation on the evolution of optimal differentiation patterns. Concretely, we model trajectories in which cells can randomly differentiate into germ or soma cell types at each cell division. After comparing many of these trajectories, we found that irreversible differentiation, where cells gradually lose their ability to produce the other cell type, is more favored in small organisms under dynamic than under constant (stage-independent) cell differentiation. Furthermore, we found that the irreversible differentiation of germ cells, where germ cells gradually lose their ability to produce soma cells, is prominent among irreversible patterns. Only large variations in the differentiation probabilities prohibit irreversible trajectories from being the optimal pattern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882815 | PMC |
http://dx.doi.org/10.1038/s41598-025-91838-8 | DOI Listing |
Cancer Immunol Res
March 2025
University of Minnesota, Minneapolis, MN, United States.
Agonistic anti-CD40 with anti-PD-1 can elicit objective responses in a small number of patients with pancreatic ductal adenocarcinoma (PDA). Better understanding of their individual effects on the PDA tumor microenvironment will help inform new strategies to further improve outcomes. Herein, we map tumor-specific CD8+ T-cell differentiation following agonistic anti-CD40 and/or anti-PDL1 in PDA.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2025
Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, United States.
Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur.
View Article and Find Full Text PDFJ Exp Med
June 2025
Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages.
View Article and Find Full Text PDFCells
March 2025
SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa.
The peremptory need to circumvent challenges associated with poorly differentiated epithelial endometrial cancers (PDEECs), also known as Type II endometrial cancers (ECs), has prompted therapeutic interrogation of the prototypically intractable and most prevalent gynecological malignancy. PDEECs account for most endometrial cancer-related mortalities due to their aggressive nature, late-stage detection, and poor response to standard therapies. PDEECs are characterized by heterogeneous histopathological features and distinct molecular profiles, and they pose significant clinical challenges due to their propensity for rapid progression.
View Article and Find Full Text PDFCells
March 2025
Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!