Identifying the active natural compounds remains a challenge for drug discovery, and new algorithms need to be developed to predict active ingredients from complex natural products. Here, we proposed Meta-DEP, a Meta-paths-based Drug Efficacy Prediction based on drug-protein-disease heterogeneity network, where Meta-paths contain all the shortest paths between drug targets and disease-related proteins in the network and drug efficacy is measured by a predictive score according to drug disease network proximity. Experiments show that Meta-DEP performs better than traditional network topology analysis on drug-disease interaction prediction task. Further investigations demonstrate that the key targets identified by Meta-DEP for drug efficacy are consistent with clinical pharmacological evidence. To prove that Meta-DEP can be used to discover active natural compounds, we apply it to predict the relationship between the monomeric components of traditional Chinese medicine included in the TCMSP database and diseases. Results indicate that Meta-DEP can accurately predict most of the drug-disease pairs included in the TCMSP database. In addition, biological experiments are directly used to demonstrate that Meta-DEP can mined active compound from traditional Chinese medicine with integrating disease transcriptomic data. Overall, the model developed in this study provides new impetus for driving the natural compound into innovative lead molecule. Code and data are available at https://github.com/t9lex/Meta-DEP .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882833 | PMC |
http://dx.doi.org/10.1038/s41598-024-82498-1 | DOI Listing |
J Biomater Appl
March 2025
Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.
View Article and Find Full Text PDFAging Dis
March 2025
Medical School of Chinese PLA, Beijing, China.
Osteoarthritis (OA) is the most common musculoskeletal disease globally and is the main reason for the chronic pain and disability in people over sixty-five worldwide. Degradation of the articular cartilage, synovial inflammation and osteophyte formation are widely acknowledged as the primary pathological manifestations of OA. OA affects more than 300 million people all over the world, bringing extremely large socioeconomic burden.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Southeast University, School of Chemistry and Chemical Engineering, Moling Street, Jiangning District, 211189, Nanjing, CHINA.
Co-crystal engineering is of interest for many applications in pharmaceutical, chemistry and material fields, but rational design of co-crystals is still challenging. Although artificial intelligence has brought major changes in the decision-making process for materials design, yet limitations in generalization and mechanistic understanding remain. Herein, we sought to improve prediction of co-crystal by combining mechanistic thermodynamic modeling with machine learning.
View Article and Find Full Text PDFMed Res Rev
March 2025
Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, Bangladesh.
The development of standard drugs for some unusual cancers, including estrogen-nonresponsive breast cancer, is somewhat difficult within a very short time. So, considering the current situation, phytoestrogen may be a potential candidate for unraveling chemotherapeutics agents. The reason for this review article is to manifest overall information regarding the effects of phytoestrogen on triple-negative breast cancer (TNBC), along with its related cellular and molecular pathways in different TNBC models.
View Article and Find Full Text PDFInt J Cancer
March 2025
Center for Epigenetics & Disease Prevention, Texas A&M HEALTH, and Department of Translational Medical Sciences, Texas A&M University Naresh K. Vashisht College of Medicine, Houston, Texas, USA.
A previously reported clinical trial in familial adenomatous polyposis (FAP) patients treated with erlotinib plus sulindac (ERL + SUL) highlighted immune response/interferon-γ signaling as a key pathway. In this study, we combine intermittent low-dose ERL ± SUL treatment in the polyposis in rat colon (Pirc) model with mechanistic studies on tumor-associated immune modulation. At clinically relevant doses, short-term (16 weeks) and long-term (46 weeks) ERL ± SUL administration results in near-complete tumor suppression in Pirc colon and duodenum (p < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!