Cardiac Effects of Modern Breast Radiation Therapy in Patients Receiving Systemic Cancer Therapy.

JACC CardioOncol

Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Electronic address:

Published: February 2025

Background: Radiation therapy (RT) improves breast cancer outcomes, but cardiac morbidity remains a concern.

Objectives: This study sought to evaluate changes in cardiac function after RT and the relationship between cardiac dose metrics and echocardiography-derived measures of function.

Methods: In a longitudinal cohort study of women with breast cancer, radiation cardiac dose metrics and core lab quantitated echocardiographic measures of cardiac function were evaluated. Dose metrics included the whole heart, left ventricle, right ventricle, and left anterior descending artery (LAD). Echocardiographic measures included left ventricular ejection fraction (LVEF), longitudinal strain, circumferential strain, E/e' (ratio of early diastolic mitral inflow velocity to early diastolic mitral annular tissue velocity), Ea/Es (ventricular arterial coupling; ratio of effective arterial elastance to end systolic elastance), and right ventricular fractional area change. The mean change in echocardiographic measures over time and the association between cardiac dose metrics and echocardiographic measures were estimated by repeated-measures multivariable linear regression via generalized estimating equations.

Results: The cohort included 303 participants (median age 52 years, 33.3% African American) who received adjuvant RT (2010-2019) with a median mean heart dose of 1.19 Gy (Q1-Q3: 0.75-2.61 Gy), were followed over a median of 5.1 years (Q1-Q3: 3.2-7.1 years). Across all participants, there was a modest increase in LVEF (52.1% pre-RT to 54.3% at 5 years; P < 0.001) but a worsening in sensitive measures of function, such as circumferential strain (-23.7% pre-RT to -21.0% at 5 years; P = 0.003). Among left-sided/bilateral breast cancer participants, changes in cardiac function were observed across all parameters (P < 0.05). The maximum LAD dose was associated with a modest worsening in LVEF, longitudinal strain, circumferential strain, and E/e'.

Conclusions: Over a median of 5.1 years, modest changes in cardiac function were observed with RT. Maximum LAD dose was associated with a worsening in systolic and diastolic function parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaccao.2025.01.012DOI Listing

Publication Analysis

Top Keywords

cardiac function
16
dose metrics
16
echocardiographic measures
16
breast cancer
12
changes cardiac
12
cardiac dose
12
circumferential strain
12
cardiac
9
radiation therapy
8
lvef longitudinal
8

Similar Publications

Importance: Excess body fat plays a pivotal role in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). HU6 is a novel, controlled metabolic accelerator that enhances mitochondrial uncoupling resulting in increased metabolism and fat-specific weight loss.

Objective: To assess efficacy and safety of HU6 in reducing body weight, improving peak volume of oxygen consumption (VO2) and body composition among patients with obesity-related HFpEF.

View Article and Find Full Text PDF

Unlabelled: Four-dimensional flow cardiovascular magnetic resonance (4D Flow cardiac MRI) is an advanced non-invasive imaging technology, and its derived kinetic energy (KE) blood flow parameters have been confirmed as a potential biomarkers for assessing ventricular hemodynamics. This review synthesizes details on the methodology, clinical significance, and current status of studies focused on quantifying KE parameters of the ventricle using 4D Flow cardiac MRI, providing an objective foundation for further exploration of the value of KE in cardiac diseases.

Study Type: retrospective.

View Article and Find Full Text PDF

Introduction: Various ventricular repolarization parameters are known to predict ventricular arrhythmias and mortality in various diseases. Although mortality in patients with heart failure with preserved ejection fraction (HFpEF) is similar to that in heart failure with reduced ejection fraction patients, studies on this subject are more limited. Therefore, it is important to evaluate the relationship between ventricular arrhythmias and mortality and ventricular repolarization parameters, especially the frontal plane QRS-T angle, in patients with HFpEF.

View Article and Find Full Text PDF

Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling.

J Cereb Blood Flow Metab

March 2025

Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.

Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation.

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!