SNORD9 promotes ovarian cancer tumorigenesis via METTL3/IGF2BP2-mediated NFYA m6A modification and is a potential target for antisense oligonucleotide therapy.

Life Sci

Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China. Electronic address:

Published: March 2025

C/D box small nucleolar noncoding RNAs (snoRNAs) are known to bind and induce 2'-O-ribose methylation of RNAs, participate in cancer tumorigenesis and development. However, their involvement in regulating m6A modification remains unreported. Analysis of the TCGA database revealed that SNORD9 was an unfavorable prognostic factor for ovarian cancer. Besides, SNORD9 was elevated in ovarian cancer. The overexpression of SNORD9 induced ovarian cancer cell proliferation and migration in vitro and induce tumorigenicity in vivo, increased the m6A modification level by binding to m6A-methyltransferase METTL3 to affect NFYA m6A modification; besides, m6A-reader IGF2BP2 was 2'-O-methylated by SNORD9, thereby affect NFYA mRNA stability, upregulate NFYA and its downstream proteins CCND1, CDK4 and VEGFA, promote ovarian cancer tumorigenesis. ASO-mediated silencing of SNORD9 suppressed tumorigenicity both in vitro and in vivo, and effectively inhibited the growth of patient-derived organoids of ovarian cancer (OC-PDO). In conclusions, we demonstrated for the first time that SNORD9 induces NFYA m6A methylation by binding to m6A methylase METTL3; modifying IGF2BP2 mRNA by 2'-O-methylation and improve NFYA mRNA stability, thus promote the tumorigenesis of ovarian cancer. Targeting ASO to SNORD9 may have efficacy in the treatment of ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2025.123527DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
32
m6a modification
16
cancer tumorigenesis
12
nfya m6a
12
cancer
9
snord9
8
ovarian
8
affect nfya
8
nfya mrna
8
mrna stability
8

Similar Publications

Heterogeneous cellular responses to hyperthermia support combined intraperitoneal hyperthermic immunotherapy for ovarian cancer mouse models.

Sci Transl Med

March 2025

Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.

The benefit of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer remains controversial, hindering the development of rational combination therapies based on hyperthermia (HT). This study reports the preliminary results of the neoadjuvant HIPEC (NHIPEC) trial (ChiCTR2000038173), demonstrating enhanced tumor response in high-grade serous ovarian cancer with NHIPEC. Through single-cell RNA sequencing analysis, we identified both homogeneous and heterogeneous cellular responses to HT within the tumor and microenvironment.

View Article and Find Full Text PDF

Background: Prior studies of participants with breast and other obesity-associated cancers in the Women's Health Initiative (WHI) showed worse mortality and cardiovascular disease (CVD) outcomes for individuals with a higher number of cardiometabolic risk factors at study entry. The purpose of this analysis is to compare the relationship between cardiometabolic abnormalities and mortality among women with and without cancer in the WHI.

Methods: Women with one of five early-stage obesity-associated cancers (breast, colorectal, endometrial, ovarian, and non-Hodgkin lymphoma) and controls without any new or prior history of cancer were selected from the WHI-Life and Longevity after Cancer ancillary study.

View Article and Find Full Text PDF

Re-Evaluating the Use of Glyphosate-based Herbicides: Implications on Fertility.

Reprod Sci

March 2025

Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.

Glyphosate-based herbicides (GBHs) are the most widely used herbicides in the United States, accounting for 19% of estimated global use. Although the Environmental Protection Agency (EPA) has reaffirmed that the active ingredient glyphosate (GLY) is safe for humans, recent studies on exposure have suggested association with cancer, metabolic disorders, endocrine disruption and infertility, Alzheimer's and Parkinson's disease, and psychological disorders. Current literature on the effects of GLY exposure on reproductive function suggests potential clinical implications on women's reproductive health, including polycystic ovarian syndrome (PCOS), endometriosis, infertility, and adverse pregnancy outcomes.

View Article and Find Full Text PDF

Endometriosis and cancer risk.

Eur J Cancer Prev

March 2025

Department of Oncology and Hemato-Oncology, University of Milan.

Endometriosis is one of the most common gynecological benign disease. Epidemiological evidence suggests a potential association between endometriosis and cancer risk. Accumulating evidence highlighted the risk of ovarian cancer, particularly endometrioid and clear cell subtypes.

View Article and Find Full Text PDF

Ovarian cancer survival depends strongly on the time of diagnosis. Detection at stage 1 must be the goal of liquid biopsies for ovarian cancer detection. We report the development and validation of graphene-based optical nanobiosensors (G-NBSs) that quantify the activities of a panel of proteases, which were selected to provide a crowd response that is specific for ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!