This study aims to develop the gelatin-based packaging film incorporated with turmeric extract to enhance the shelf life of a minced chicken. The films were subjected to functional, morphological and physicochemical characterization. The results showed that ethanolic extract of turmeric has a higher amount of turmerone and ar-turmerone along with some other bioactive compounds. The antioxidant activity of turmeric extract (TE) was (TPC 15 ± 0.9 mg GAE/g, DPPH 87 ± 7.5 %, FRAP 4.8 ± 0.05 mmol Trolox eq/100 g, ABTS 714.48 ± 22 %). FTIR spectra showed slight changes in their amide regions with the addition of TE. XRD indicated that characteristic peak 2θ ≈ 13° in the control film and T while it disappeared in T. SEM micrographs showed that the control film and T have uniformity, while T showed some irregularities. UV transmission was decreased with the addition of TE in the films as compared to control films. The physical tests of the films showed that film solubility (16 ± 2.1-26 ± 3), moisture content (10 ± 1-16.1 ± 2.2), tensile strength (8.1 ± 1.3-8.8 ± 0.9) and WVP (8.4 ± 1.5-10 ± 1.7) decreased by increasing the concentration of turmeric extract while thickness (0.038 ± 0.002-0.045 ± 0.003) and EAB (68 ± 7-71.9 ± 8) increased. Meanwhile, the films effectively inhibited the lipid oxidation and growth of microbes to extend the shelf-life of meat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141558DOI Listing

Publication Analysis

Top Keywords

turmeric extract
16
packaging film
8
film incorporated
8
incorporated turmeric
8
control film
8
film
5
turmeric
5
extract
5
films
5
development ultrasonic-assisted
4

Similar Publications

Epigenetic modulation plays a crucial role in neuroprotection by regulating cellular responses to stress, inflammation, and oxidative damage, particularly in neurodegenerative diseases. Recognizing the therapeutic potential of epigenetic regulators, this study investigated the synergistic neuroprotective effects of curcumin-enriched turmeric extract combined with L-ascorbic acid, focusing on its modulation of epigenetic pathways in oxidative stress-induced neuronal damage. SH-SY5Y neuronal cells were treated with the combination at 20 and 40 µg/mL, and subsequently exposed to 200 µM hydrogen peroxide (HO) to induce oxidative stress.

View Article and Find Full Text PDF

This study aims to develop the gelatin-based packaging film incorporated with turmeric extract to enhance the shelf life of a minced chicken. The films were subjected to functional, morphological and physicochemical characterization. The results showed that ethanolic extract of turmeric has a higher amount of turmerone and ar-turmerone along with some other bioactive compounds.

View Article and Find Full Text PDF

Introduction: The green synthesis of silver nanoparticles has gained attention for being environmentally friendly and cost-effective. This study investigates the synthesis of silver nanoparticles using neem and turmeric extracts, which serve as natural reducing and capping agents, with a focus on characterizing these nanoparticles and assessing their antimicrobial properties against oral pathogens.

Materials And Methods: Neem and turmeric extracts were prepared by heating their powdered forms in distilled water, followed by filtration.

View Article and Find Full Text PDF

: Post-COVID-19 irritable bowel syndrome (PCIBS) is a frequent finding and is frequently associated with enteral dysbiosis. This pilot study compared the effects of extracts from curcuma and boswellia on PCIBS and irritable bowel syndrome (IBS) in individuals who had never had a COVID-19 infection (controls). : A total of 16 subjects with PCIBS and 28 controls with evidence of IBS gastrointestinal symptoms and with enteral dysbiosis were recruited and supplemented for 30 days with sunflower-lecithin-based formulations of extracts of (500 mg) and (150 mg) b.

View Article and Find Full Text PDF

Objective: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Preclinical and clinical studies investigating the effects of curcumin on TBI indicate that curcumin can modulate essential signaling pathways and molecules that mediate neuroinflammation in TBI. This study aimed to explore the effects of turmeric on neuroinflammation and neurodegenerative disorder following repetitive traumatic brain injuries (rTBIs) in a rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!