Magnesium-gallate MOF integrated conductive cryogel for inflammation regulation and boosting bone regeneration.

Int J Biol Macromol

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Published: March 2025

The regeneration and repair of natural bone is a complex and multifaceted process. Potentially, multifunctional scaffolds that exhibit synergistic effects of various biological activities and align with the dynamic bone healing process, are highly expected to achieve desirable bone repairing outcomes. Bioavailable magnesium (Mg) is an essential element taking part in bone regeneration via promoting angiogenesis and osteogenesis. Polyphenol gallic acid (GA) is an anti-inflammatory molecule that can modulate immune microenvironment. To control their release behaviors, Mg and GA can react with each other to form metal-organic frameworks (MOF), which are then embedded into conductive porous scaffolds made of gelatin cryogel and poly(3,4-ethyldioxyethiophene): polystyrene sulfonate (PEDOT:PSS). In in vitro cell culture, the MOF-integrated conductive scaffold can simultaneously provide sustained supply of Mg and GA to modulate the biological responses of a variety of cells. In in vivo evaluations, it shows remarkably enhanced new bone formation, as compared to groups of only MOF-contained non-conductive scaffold or conductive scaffold without MOF in rat calvarial defect model. In summary, conductive scaffold associated with sustained release of bioactive factors can serve as an effective treatment for inducing neo-bone growth benefiting from the synergistical contributions of diverse bioactive factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141672DOI Listing

Publication Analysis

Top Keywords

conductive scaffold
12
bone regeneration
8
bioactive factors
8
bone
6
conductive
5
magnesium-gallate mof
4
mof integrated
4
integrated conductive
4
conductive cryogel
4
cryogel inflammation
4

Similar Publications

Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.

View Article and Find Full Text PDF

Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.

View Article and Find Full Text PDF

Engineering strategies for the construction of oriented and functional skeletal muscle tissues.

Biofabrication

March 2025

Institute of Zoology Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, 100101, CHINA.

The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement of in vitro construction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means.

View Article and Find Full Text PDF

Aryl diazonium electrografting is a versatile methodology for the functionalization of electrode surfaces, yet its usage has been hampered by both the short lifespan of aryl diazonium cations in aqueous solution and the harsh conditions required to generate them . This can make accessing complicated aryl diazonium cations and derivatized surfaces thereof difficult. The usage of triazabutadienes has the potential to address many of these issues as triazabutadienes are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV exposure rapidly release aryl diazonium cations under mild conditions (i.

View Article and Find Full Text PDF

Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!