Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current aquaculture practices generate nutrient-rich effluents that cause significant environmental pollution. This study presents a novel synergistic microalgae-duckweed system integrating Chlorella sp. and Spirodela polyrhiza for sustainable wastewater treatment, biomass valorization, and carbon sequestration. Over a 15-day treatment period, the system achieved unprecedented removal efficiencies: 91.25% for NO-N, 98.90% for NH-N, 100% for total phosphorus, and a 95% reduction in chemical oxygen demand (COD). Concurrently, the system produced 6.67 g/L of microalgal biomass and 90 g/m of duckweed biomass significantly higher than those of standalone systems, which showed enhanced protein and lipid contents suitable for bioenergy or feed applications. The dual system sequestered CO at a remarkable rate of 1.65 g/L/day, exceeding standalone treatments. Microbial community analysis revealed enriched functional diversity, promoting optimized nutrient cycling and organic matter degradation. Although the system was tested at a lab scale, it demonstrates promising scalability due to its efficient nutrient removal and biomass production, as well as the robustness of the combined microalgae-duckweed treatment approach. This integrated approach not only addresses water pollution but also advances the circular economy by converting aquaculture waste into high-value biomass and mitigating carbon emissions. These findings position the synergistic microalgae-duckweed system as a scalable and eco-friendly solution for sustainable aquaculture management and environmental conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.121271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!