Evaluation of a concentration method for the recovery of human adenovirus from mineral water, tap water and well water.

J Virol Methods

Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco. Electronic address:

Published: March 2025

Human adenoviruses (HAdV) are frequently excreted in large quantities and persist for extended periods in the environment, posing a significant health risk related to waterborne gastroenteritis. The objective of this study was to evaluate an adsorption-elution method using a negatively charged nitrocellulose membrane for its effectiveness in recovering HAdV from three different types of water (mineral water, tap water and well water). The detection of HAdV was carried out using real-time PCR. For this purpose, sterilized water samples were spiked with HAdV-infected stool and filtered through an electronegative membranes coated with MgCl₂ to retain viral particles. Subsequently, the viruses were eluted from the filters using sodium hydroxide and concentrated through two centrifugation cycles. Viral nucleic acids were then extracted and detected by real time PCR. Regarding HAdV recovery, the method's efficiency varied depending on the type of analyzed water. However, this method demonstrated a consistent performance, providing reliable results across different water samples, whether from mineral water, tap water or well water. This consistency in viral recovery is crucial to ensuring the accuracy and reliability of virological analyses in various aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2025.115142DOI Listing

Publication Analysis

Top Keywords

water
13
mineral water
12
water tap
12
tap water
12
water well
12
well water
12
water samples
8
evaluation concentration
4
concentration method
4
method recovery
4

Similar Publications

Aryl diazonium electrografting is a versatile methodology for the functionalization of electrode surfaces, yet its usage has been hampered by both the short lifespan of aryl diazonium cations in aqueous solution and the harsh conditions required to generate them . This can make accessing complicated aryl diazonium cations and derivatized surfaces thereof difficult. The usage of triazabutadienes has the potential to address many of these issues as triazabutadienes are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV exposure rapidly release aryl diazonium cations under mild conditions (i.

View Article and Find Full Text PDF

Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing.

Langmuir

March 2025

Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.

Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.

View Article and Find Full Text PDF

Aim(s): To investigate the impact of the absence of specific advice for oral fluid intake, compared to supplementation water intake on the occurrence of post-dural puncture headache.

Design: A prospective, open-label, non-inferiority, multicenter trial including hospitalized patients requiring a diagnostic lumbar puncture in seven hospitals in France.

Methods: Patients were randomly allocated (1:1) either to receive no specific advice on oral fluid intake (FREE-FLUID), or to be encouraged to drink 2 liters of water (CONTROL) within the 2 hours after lumbar puncture.

View Article and Find Full Text PDF

Infrared Spectroscopy of [HO-NO]-(HO) ( = 1 and 2): Microhydration Effects on the Hemibond.

J Phys Chem A

March 2025

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

The hemibond, a nonclassical covalent bond involving three electrons shared between two centers, has attracted considerable attention due to its significance in radiation chemistry. Water radical cation clusters, [HO-X], exhibit two primary bonding motifs: the hemibond and the hydrogen bond. Although hydrogen bond formation typically dominates, recent studies have identified instances of hemibond formation in some systems involving water molecules.

View Article and Find Full Text PDF

Coordination cages with specific properties and functionalities are utilized as reaction vessels for the desired chemical transformation of substrates. The symmetry and inherent cavity of coordination cages can influence the host-guest interactions and the reaction outcome in their confined space. However, the impact of the cage shape on different transformations remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!