Microalgal bioremediation is a promising alternative for biological wastewater treatment but constrained by low microalgal activities. Here, bicarbonate fertilization was introduced to enhance microalgal wastewater treatment, with systematic investigations of its biphasic dose-dependent effects on microalgal activity and nutrient uptake. The results showed that moderate inorganic carbon (MIC, 0.05 M) group significantly improved the biomass production, NH-N removal, and PO-P removal by 76.0%, 21.3%, and 11.9%, respectively; whereas high inorganic carbon (HIC, 0.1 M) group inhibited them by 11.0%, 4.48%, and 52.7%, respectively, compared with low inorganic carbon (LIC, 0.005 M) group. Mechanistic analyses suggested that LIC group encountered high alkalinity, exacerbated carbon/trace element limitation, and attenuated extracellular polymeric substances (EPS) barriers and antioxidant systems; while HIC group increased salinity stresses, triggered morphological defense, and diminished light harvesting and phycospheric mass transfer, restricting microalgal activity and nutrient uptake. In contrast, MIC group relieved carbon limitation, accelerated photosynthetic electron transfer, and sustained intracellular redox homeostasis, underpinning the highest biomass production and nutrient removal. These findings could facilitate the practical application of bicarbonate fertilization in microalgal wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124810DOI Listing

Publication Analysis

Top Keywords

bicarbonate fertilization
12
microalgal activity
12
activity nutrient
12
nutrient uptake
12
wastewater treatment
12
inorganic carbon
12
fertilization microalgal
8
microalgal wastewater
8
biomass production
8
microalgal
7

Similar Publications

This study explores for the first time the P recovery from poultry litter ash (PLA) using microwave-assisted thermochemical treatment, aiming to improve its bioavailability for utilization as a fertilizer. PLA samples, originating from laying hens' manure incineration, were subjected to microwave treatment with the addition of sodium bicarbonate, and their physical-chemical characteristics were analyzed using X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicate that the microwave treatment led to the formation of NaCaPO crystals, with a significant increase in P solubility post-treatment, which is crucial for plant uptake.

View Article and Find Full Text PDF

Microalgal bioremediation is a promising alternative for biological wastewater treatment but constrained by low microalgal activities. Here, bicarbonate fertilization was introduced to enhance microalgal wastewater treatment, with systematic investigations of its biphasic dose-dependent effects on microalgal activity and nutrient uptake. The results showed that moderate inorganic carbon (MIC, 0.

View Article and Find Full Text PDF

With the increasing concern of potential loss of transgenic mosquitoes which are candidates as new tools for mosquito-borne disease control, methods for cryopreservation are actively under investigation. Methods to cryopreserve Anopheles gambiae sperm have recently been developed, but there are no artificial insemination or in vitro fertilization tools available. As a step to achieve this, we sought to identify a suitable medium for in vitro incubation of An.

View Article and Find Full Text PDF

WCS417 Strain Enhances Tomato ( L.) Plant Growth Under Alkaline Conditions.

Plants (Basel)

January 2025

Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain.

Iron (Fe) deficiency is among the most important agronomical concerns under alkaline conditions. Bicarbonate is considered an important factor causing Fe deficiency in dicot plants, mainly on calcareous soils. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems.

View Article and Find Full Text PDF

MT1/cAMP/PKA Pathway in Melatonin-Regulated Sperm Capacitation.

Reprod Sci

March 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!