A brief review of MRI studies in patients with attention-deficit/hyperactivity disorder and future perspectives.

Brain Dev

Department of Psychiatry & Behavioral Sciences, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.

Published: March 2025

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by persistent inattention, hyperactivity, and/or impulsivity that significantly affects academic, occupational, and social functioning. This review summarizes key findings of structural and functional magnetic resonance imaging (MRI) studies investigating the neural underpinnings of ADHD, focusing on T1-weighted structural MRI, diffusion tensor imaging (DTI), task-based functional MRI (task fMRI), and resting-state functional MRI (rs-fMRI). T1-weighted structural MRI studies have revealed reduced gray matter volume in regions implicated in executive function, particularly the frontal cortex, basal ganglia, and cerebellum, along with evidence of delayed cortical maturation. DTI findings highlighted abnormalities in white matter integrity, particularly in the fronto-striatal-cerebellar circuits and connections between the corpus callosum and cingulum. Task fMRI studies have demonstrated reduced activation of brain networks involved in cognitive control, timing, and reward processing, including fronto-striatal and fronto-parietal networks. Furthermore, rs-fMRI research has shown altered connectivity patterns within and between key brain networks, including the default mode, fronto-parietal, and salience networks. Despite these insights, inconsistencies across studies underscore the need for larger and more standardized research efforts. Future research should employ multimodal imaging techniques and advanced analytical methods such as machine learning to better subtype ADHD and customize interventions. Moreover, establishing harmonized imaging protocols across institutions, as exemplified by innovative strategies, such as the traveling-subject method, is crucial for mitigating intersite variability. Through collaborative efforts, neuroimaging studies in ADHD are anticipated to enhance our understanding of the disorder's heterogeneity while informing the development of precise clinical diagnoses and personalized therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.braindev.2025.104340DOI Listing

Publication Analysis

Top Keywords

mri studies
12
attention-deficit/hyperactivity disorder
8
t1-weighted structural
8
structural mri
8
functional mri
8
task fmri
8
brain networks
8
studies
6
mri
5
review mri
4

Similar Publications

Importance: Epidemiological studies suggest that lifestyle factors are associated with risk of dementia. However, few studies have examined the association of diet and waist to hip ratio (WHR) with hippocampus connectivity and cognitive health.

Objective: To ascertain how longitudinal changes in diet quality and WHR during midlife are associated with hippocampal connectivity and cognitive function in later life.

View Article and Find Full Text PDF

Neurochemical imbalance is a contributing factor to neurological symptoms in multiple sclerosis (MS). The matured myelin sheath is crucial for substance transportation within the extracellular space (ECS) and for maintaining local homeostasis. Therefore, we hypothesize that disturbed ECS transportation following demyelinating lesions might lead to neurochemical imbalance in MS.

View Article and Find Full Text PDF

Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups.

View Article and Find Full Text PDF

Unlabelled: Four-dimensional flow cardiovascular magnetic resonance (4D Flow cardiac MRI) is an advanced non-invasive imaging technology, and its derived kinetic energy (KE) blood flow parameters have been confirmed as a potential biomarkers for assessing ventricular hemodynamics. This review synthesizes details on the methodology, clinical significance, and current status of studies focused on quantifying KE parameters of the ventricle using 4D Flow cardiac MRI, providing an objective foundation for further exploration of the value of KE in cardiac diseases.

Study Type: retrospective.

View Article and Find Full Text PDF

Objective: This study was aimed to analyze 10 pediatric cases of pigmented villonodular synovitis (PVNS) of the knee to elucidate their clinical features, diagnosis, treatments, and prognosis for providing reference regarding its clinical management in children.

Methods: A retrospective analysis was made pertaining to the clinical manifestations, magnetic resonance imaging (MRI) findings, pathology, immunohistochemical results, treatment methods, and follow-up outcomes of 10 pediatric PVNS patients of the knee treated from January 2022 to January 2024 at our hospital. They were compared and analyzed with existing literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!