In this study, a konjac glucomannan (KGM)/ gelatin (GEL)-based film integrated with ginger essential oil (GEO) and rosemary essence oil (REO)-loaded bacterial cellulose was prepared. The synergistic effects of GEO and REO were evaluated. The physicochemical, mechanical, optical, morphological, antibacterial, antioxidant properties, thermal stability and preservation effects of the composite films were characterized. Results demonstrated that GEO and REO exhibited synergistic antibacterial activity when combined in a 3:1 ratio. FT-IR analysis, scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed good compatibility among the components of the film. Furthermore, the incorporation of EOs enhanced various properties of the active film including mechanical strength, barrier performance, hydrophobicity as well as its antibacterial and antioxidant capabilities while also improving thermal stability. Additionally, the active film containing 0.8 % (w/v) composite essential oils (KGB-0.8) effectively maintained the quality of refrigerated sea bass and extended the shelf-life for another 6 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.143604 | DOI Listing |
Nano Lett
March 2025
College of Physics, Weihai Innovation Research Institute, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Ferromagnetic metals, distinguished by high Curie temperatures and magnetization, are crucial in voltage-controlled magnetism for potential room-temperature applications in low-power multifunctional devices. Despite numerous attempts based on various mechanisms, achieving ideal magnetic modulation in metals remains challenging. This work proposes a new mechanism to control bulk metal magnetism by modulating valence electron filling in spin-polarized bands, leveraging the Slater-Pauling rule in alloys.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
High-performance radiation-resistant lubricating materials (RRLMs) with nanostructures hold great promise for enhancing the irradiation tolerance because of their sinking effect of boundaries on defects. Despite recent advances, challenges remain in finding a nanostructure that exhibits both superior irradiation tolerance and excellent lubricant properties. Unlike traditional nanostructured composite materials that required complex predesign, herein, a MoS nanocrystals (NCs)/amorphous dual phase in subirradiation saturation (SIS) state was spontaneously formed during irradiation, exhibiting high irradiation resistance under the synergistic effect of "defect traps" by interfaces and edge dislocation.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2025
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Two-dimensional ferromagnetic materials have a broader development prospect in the field of spintronics. In particular, the high spin polarization system with half-metallic characteristics can be used as an efficient spin injection electrode. first-principles calculations, we predict that monolayer MnF has Dirac half-metallic properties.
View Article and Find Full Text PDFBME Front
March 2025
Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
This study aims to develop and characterize electroactive hydrogels based on reduced bacterial cellulose (BC) and TiCT -MXene for their potential application in wound healing and real-time monitoring. The integration of TiCT -MXene into BC matrices represents a novel approach to creating multifunctional hydrogels that combine biocompatibility, electrical conductivity, and mechanical durability. These properties make the hydrogels promising candidates for advanced wound care and real-time monitoring applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!