Membrane fouling remains a significant challenge in the operation of membrane bioreactors (MBRs). Plant operators rely heavily on observations of filtration performance from noisy sensor data to assess membrane fouling conditions and lab-based protocols for plant maintenance, often leading to inaccurate estimations of future performance and delayed membrane cleaning. This challenge is further compounded by the difficulty in integrating existing complex mechanistic models with the Internet of Things (IoT) systems of wastewater treatment plants (WWTPs). By harnessing data obtained from WWTPs, along with innovative data denoising and model training strategies, we developed a machine learning application (MBR-Net) that is capable of forecasting membrane fouling, as indicated by permeability, for a full-scale submerged MBR plant in real time. We show that the trained model can effectively predict one-day-ahead changes in irreversible fouling under different desired fluxes, cleaning conditions and feedwater conditions (with MAPE < 6.45%, MAE < 3.71 LMH bar, and > 0.87 on two independent testing sets). Although data availability presented certain limitations in the model development process, the current results demonstrate the significant value of machine learning in membrane fouling predictions and in providing decision support for fouling mitigation strategies in full-scale WWTPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c12835DOI Listing

Publication Analysis

Top Keywords

membrane fouling
20
machine learning
12
wastewater treatment
8
treatment plants
8
learning membrane
8
fouling
7
membrane
7
predicting membrane
4
fouling submerged
4
submerged membrane
4

Similar Publications

The backgrinding of silicon (Si) wafers has resulted in a loss of ∼70% of valuable Si materials. Consequently, an effluent known as diluted backgrinding wastewater (DBGW) is generated, containing nanosized silicon/silica colloids. Here, we discussed the challenges associated with the effective separation of Si-based waste from the DBGW based upon two perspectives, namely, a nanosized effect and a colloidal stability effect.

View Article and Find Full Text PDF

Synergistic effect of electrocoagulation and antifouling nanofiltration membranes for microcystin removal.

Chemosphere

March 2025

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States. Electronic address:

This study aims to develop fouling-resistant membranes utilizing zwitterionic polymers for an integrated electrocoagulation (EC) and nanofiltration (NF) process to effectively remove microcystin-LR (MC-LR). The fabricated membranes were thoroughly characterized through contact angle measurements, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The efficacy of these modified membranes was investigated for synthetic microcystin removal, employing both commercial NF 270 membranes and modified NF 270 with zwitterionic polymers.

View Article and Find Full Text PDF

Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions.

Water Res

February 2025

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

Aerobic granular sludge (AGS) has demonstrated a lower fouling propensity than floc sludge in membrane bioreactors (MBRs) due to various hypotheses, including differences in particle size and the efficacy of physical scouring. However, controversy exists regarding the dominant cause of this lower fouling. Therefore, in this work, we systematically investigated the contribution of four potential mechanisms of AGS on membrane fouling alleviation in MBRs: 1) loosening cake layer; 2) scouring of the membrane surface; 3) regulating soluble microbial product (SMP) secretion; and 4) changing the rheology of the bulk solution.

View Article and Find Full Text PDF

-Oxide Zwitterionic-Based Antifouling Loose Nanofiltration Membranes with Superior Water Permeance and Effective Dye/Salt Separation.

Environ Sci Technol

March 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China.

Loose nanofiltration (LNF) membranes with high permeance and separation selectivity are highly desired for the effective separation of organic dyes and inorganic salts. Herein, a novel polyamide LNF membrane was fabricated using zwitterionic amine reactant trimethylamine -oxide-based polyethylenimine (TPEI) and trimesoyl chloride (TMC) via interfacial polymerization (IP). A thin, loose, and smooth polyamide layer was formed due to the low diffusion rate and modified chemical structure of TPEI.

View Article and Find Full Text PDF

This study introduces a novel application of electrocoagulation (EC) as a pretreatment method for seawater desalination, uniquely focusing on reducing organic and biological fouling in reverse osmosis membranes. The EC process was investigated as an alternative to conventional approaches such as chemical coagulation, chlorination, and fouling inhibitors. EC was conducted in a batch cell using iron electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!