A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting GOLPH3L improves glioblastoma radiotherapy by regulating STING-NLRP3-mediated tumor immune microenvironment reprogramming. | LitMetric

Radiotherapy (RT) has been the standard-of-care treatment for patients with glioblastoma (GBM); however, the clinical effectiveness is hindered by therapeutic resistance. Here, we demonstrated that the tumor immune microenvironment (TIME) exhibited immunosuppressive properties and high expression of Golgi phosphoprotein 3 like (GOLPH3L) in RT-resistant GBM. Our study showed that GOLPH3L interacted with stimulator of interferon genes (STING) at the aspartic acid residue 184 in Golgi after RT, leading to coat protein complex II-mediated retrograde transport of STING from Golgi to endoplasmic reticulum. This suppressed the STING-NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated pyroptosis, resulting in suppressive TIME, driving GBM resistance to RT. Genetic GOLPH3L ablation in RT-resistant GBM cells augmented antitumor immunity and overcame tumor resistance to RT. Moreover, we have identified a small molecular inhibitor of GOLPH3L, vitamin B5 calcium (VB5), which improved the therapeutic efficacy of RT and immune checkpoint blockade by inducing a robust antitumor immune response in mouse models. Clinically, patients with GBM treated with VB5 exhibited improved responses to RT. Thus, reprogramming the TIME by targeting GOLPH3L may offer a potential opportunity to improve RT in GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.ado0020DOI Listing

Publication Analysis

Top Keywords

targeting golph3l
8
tumor immune
8
immune microenvironment
8
rt-resistant gbm
8
gbm
6
golph3l
5
golph3l improves
4
improves glioblastoma
4
glioblastoma radiotherapy
4
radiotherapy regulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!