Development of efficient and cost-effective catalysts for the dehydrogenation of Ammonia-Borane (AB) has been a challenge which affects the advancement of the hydrogen economy. Over the last decades, pincer-type transition metal complexes are known to show promising results in catalyzing many chemical reactions ranging from CO2 reduction to C-H bond activation. In this work we investigate the ability of a high-valent Ni-III-Cl complex (complex 1) for the dehydrogenating AB at slightly higher than room temperature. Although the abstraction of H2 from AB can occur at room temperature, higher temperature is required due to relatively higher free-energy barriers for the formation of molecular H2. However, when the Ni-III center is substituted by a Fe-III center (complex 2), AB dehydrogenation can occur at room temperature for one equiv of AB with a free-energetic span of 21.07 kcal/mol. Therefore, for the initial cycle of AB dehydrogenation, the Fe-III complex has better functionality and this work exhibits the impact of metal mono-substitution, specifically Fe in activating AB dehydrogenation at room temperature and further paves the way for simple modelling of transition metal-based complexes as catalysts for such reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401976DOI Listing

Publication Analysis

Top Keywords

room temperature
16
pincer-type transition
8
transition metal
8
complex dehydrogenation
8
dehydrogenation ammonia-borane
8
occur room
8
complex
5
dehydrogenation
5
temperature
5
modelling fe-iii
4

Similar Publications

Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing.

Langmuir

March 2025

Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.

Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.

View Article and Find Full Text PDF

On-Off Magnetism of Ferromagnetic Metals via Electrochemical Driven Band Filling.

Nano Lett

March 2025

College of Physics, Weihai Innovation Research Institute, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.

Ferromagnetic metals, distinguished by high Curie temperatures and magnetization, are crucial in voltage-controlled magnetism for potential room-temperature applications in low-power multifunctional devices. Despite numerous attempts based on various mechanisms, achieving ideal magnetic modulation in metals remains challenging. This work proposes a new mechanism to control bulk metal magnetism by modulating valence electron filling in spin-polarized bands, leveraging the Slater-Pauling rule in alloys.

View Article and Find Full Text PDF

We studied a family of coordination compounds with short intramolecular spatial separation between an organic chromophore and a metal centre. The specific geometry was realized by means of anthracene-functionalized tertiary aryl phosphanes. Their silver and gold complexes (1, 2) operate as conventional fluorophores, with photophysical behavior defined by anthracene-localized allowed transitions.

View Article and Find Full Text PDF

Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.

View Article and Find Full Text PDF

The cytochrome b6f complex (Cyt b6f) plays pivotal roles in both linear and cyclic electron transport of oxygenic photosynthesis in plants and cyanobacteria. The four large subunits of Cyt b6f are responsible for organizing the electron transfer chain within Cyt b6f and have their counterparts in the cytochrome bc1 complex in other bacteria. The four small subunits of Cyt b6f are unique to oxygenic photosynthesis, and their functions remain to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!