Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid screening of foodborne pathogens is crucial to prevent food poisoning. In this study, we proposed a nanozyme-catalyzed colorimetric microfluidic immunosensor (Nano-CMI) for the filtration enrichment and ultrasensitive detection of in complex matrices. Gold-core porous platinum shell nanopompoms (Au@Pt nanopompoms) were synthesized with excellent peroxidase-like activity to oxidize 3,3',5,5'-tetramethylbenzidine with significant color change. The Au@Pt nanopompoms demonstrated a large reaction area, superior catalytic property, and good stability. The microfluidic chip used in the Nano-CMI was designed based on the size disparities among , Au@Pt nanopompoms, and the pore sizes of filters I and II. Thus, a biosensor containing pretreatment, incubation, enrichment, and detection of four-in-one functions was established and performed under the drive of a medical plastic syringe. This biosensor can accomplish ultrasensitive detection of with a limit of detection as low as 9 cfu/mL within 20 min, which makes it suitable for point-of-care testing. The proposed Nano-CMI also possessed high specificity and good repeatability (RSD < 2.1%) and can thus be applied directly to the analysis of real food samples, suggesting its great potential for practical application in the food safety field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c05607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!