Diffusion models have garnered significant attention for MRI Super-Resolution (SR) and have achieved promising results. However, existing diffusion-based SR models face two formidable challenges: 1) insufficient exploitation of complementary information from multi-contrast images, which hinders the faithful reconstruction of texture details and anatomical structures; and 2) reliance on fixed magnification factors, such as 2× or 4×, which is impractical for clinical scenarios that require arbitrary scale magnification. To circumvent these issues, this paper introduces IM-Diff, an implicit multi-contrast diffusion model for arbitrary-scale MRI SR, leveraging the merits of both multi-contrast information and the continuous nature of implicit neural representation (INR). Firstly, we propose an innovative hierarchical multi-contrast fusion (HMF) module with reference-aware cross Mamba (RCM) to effectively incorporate target-relevant information from the reference image into the target image, while ensuring a substantial receptive field with computational efficiency. Secondly, we introduce multiple wavelet INR magnification (WINRM) modules into the denoising process by integrating the wavelet implicit neural non-linearity, enabling effective learning of continuous representations of MR images. The involved wavelet activation enhances space-frequency concentration, further bolstering representation accuracy and robustness in INR. Extensive experiments on three public datasets demonstrate the superiority of our method over existing state-of-the-art SR models across various magnification factors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2025.3544265DOI Listing

Publication Analysis

Top Keywords

im-diff implicit
8
implicit multi-contrast
8
multi-contrast diffusion
8
diffusion model
8
arbitrary scale
8
mri super-resolution
8
magnification factors
8
implicit neural
8
multi-contrast
5
model arbitrary
4

Similar Publications

Diffusion models have garnered significant attention for MRI Super-Resolution (SR) and have achieved promising results. However, existing diffusion-based SR models face two formidable challenges: 1) insufficient exploitation of complementary information from multi-contrast images, which hinders the faithful reconstruction of texture details and anatomical structures; and 2) reliance on fixed magnification factors, such as 2× or 4×, which is impractical for clinical scenarios that require arbitrary scale magnification. To circumvent these issues, this paper introduces IM-Diff, an implicit multi-contrast diffusion model for arbitrary-scale MRI SR, leveraging the merits of both multi-contrast information and the continuous nature of implicit neural representation (INR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!