The fluidic memristor has attracted growing attention as a promising candidate for neuromorphic computing and brain-computer interfaces. However, a fluidic memristor with ion selectivity as that of natural ion channels remains a key challenge. Herein, inspired by the structure of natural biomembranes, we developed an ion-shuttling memristor (ISM) by utilizing organic solvents and artificial carriers to emulate ion channels embedded in biomembranes, which exhibited both neuromorphic functions and ion selectivity. Pinched hysteresis loop curve, scan rate dependency, and distinctive impedance spectra confirmed the memristive characteristics of the as-prepared device. Moreover, the memory mechanism was discussed theoretically and validated by finite-element modeling. The ISM features multiple neuromorphic functions, such as paired-pulse facilitation, paired-pulse depression, and learning-experience behavior. More importantly, the ion selectivity of the ISM was observed, which allowed further emulation of ion-selective neural functions like resting membrane potential. Benefiting from the structural similarity to membrane-embedded ion channels, the ISM opens the door for ion-based neuromorphic computing and sophisticated chemical regulation by manipulating multifarious ions with neuromorphic functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2417040122 | DOI Listing |
J Colloid Interface Sci
March 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Heilongjiang Provincial Key Laboratory of Advanced Quantum Functional Materials and Sensor Devices, Harbin 150001, China. Electronic address:
Optical synaptic devices (OSDs) have neuromorphic vision sensing capability showing great potential in breaking the von Neumann bottleneck and facilitating future artificial vision systems. However, the applications of two-dimensional (2D) material-based OSDs are still impeded by complicated structures, preparation techniques and so on. In this work, we propose a 2D OSD based on BiSe films prepared by a chemical vapor deposition method followed by an in-situ thermal treatment.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
The effective and precise processing of visual information by the human eye primarily relies on the diverse contrasting functions achieved through synaptic regulation of ion transport in the retina. Developing a bio-inspired retina that uses ions as information carriers can more accurately replicate retina's natural signal processing capabilities, enabling high-performance machine vision. Herein, an ion-confined transport strategy is proposed to construct a bio-inspired retina by developing artificial synapses with inhibitory and excitatory contrasting functions.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Emerging neuromorphic computing offers a promising and energy-efficient approach to developing advanced intelligent systems by mimicking the information processing modes of the human brain. Moreover, inspired by the high parallelism, fault tolerance, adaptability, and low power consumption of brain perceptual systems, replicating these efficient and intelligent systems at a hardware level will endow artificial intelligence (AI) and neuromorphic engineering with unparalleled appeal. Therefore, construction of neuromorphic devices that can simulate neural and synaptic behaviors are crucial for achieving intelligent perception and neuromorphic computing.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark.
In the advancing field of optoelectronics, multifunctional devices that integrate both detection and processing capabilities are increasingly desirable. Here, a gate-tunable dual-mode optoelectronic device based on a MoTe/MoS van der Waals heterostructure, designed to operate as both a self-powered photodetector and an optoelectronic synapse, is reported. The device leverages the photovoltaic effect in the MoTe/MoS PN junction for self-powered photodetection and utilizes trapping states at the SiO/MoS interface to emulate synaptic behavior.
View Article and Find Full Text PDFNat Commun
March 2025
The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
The heterogeneity of major depressive disorder (MDD) has hindered clinical translation and neuromarker identification. Biotyping facilitates solving the problems of heterogeneity, by dissecting MDD patients into discrete subgroups. However, interindividual variations suggest that depression may be conceptualized as a "continuum," rather than as a "category.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!