Impact of Reaction Environment on Photogenerated Charge Transfer Demonstrated by Sequential Imaging.

J Am Chem Soc

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Published: March 2025

Most photocatalysis research focuses on understanding the photogenerated charge transfer processes within the solid catalysts themselves. However, these studies often overlook the impact of the reaction environment on photogenerated charge separation and reactions. To address this gap, our study employed a sequential imaging methodology that integrates surface photovoltage microscopy (SPVM), atomic force microscopy (AFM), and scanning electrochemical microscopy (SECM) to track the transfer of photogenerated charges from the space charge region to the reactants at the nanoscale on individual BiVO particles. It identifies the key role that surface charges at the photocatalyst-electrolyte interface play in photogenerated charge transfer. Specifically, we demonstrated that the surface charge generates an additional driving force, which adjusts the interface electric field and reverses the photovoltage of {010} facet from 90 to -25 mV in a neutral electrolyte. This competitive or even larger driving force compels the photogenerated electrons, which are confined within the bulk, to migrate to the surface, ultimately leading to the redistribution of photogenerated charges. Furthermore, our findings uncovered that the difference between the solution pH and the isoelectric point of the facet serves as the origin of the interfacial electric field. Overall, our sequential imaging research fills an important gap in understanding the driving and influencing factors of charge transfer across the solid-liquid interface for photocatalytic reactions in solution. It provides significant insights into clarifying the bottleneck issue of charge separation in photocatalytic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c10300DOI Listing

Publication Analysis

Top Keywords

photogenerated charge
16
charge transfer
16
sequential imaging
12
impact reaction
8
reaction environment
8
environment photogenerated
8
charge
8
transfer demonstrated
8
charge separation
8
photogenerated charges
8

Similar Publications

Phosphating CoMoO-Modified Hematite-Based Photoanode Enhances Surface Charge Transfer and Reaction Activity for Efficient Photoelectrochemical Water Oxidation.

Langmuir

March 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.

The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.

View Article and Find Full Text PDF

Bifunctional tubular step-scheme CoS/CdS heterostructure for highly efficient photoelectrochemical detection coupled with the degradation of tetracycline.

Food Chem

March 2025

Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China. Electronic address:

A bifunctional tubular step-scheme CoS/CdS heterostructure was successfully synthesized for efficient photoelectrochemical (PEC) detection coupled with the degradation of tetracycline (TC). It was found that so-obtained heterostructure could effectively suppress the recombination of photo-generated carriers and display larger PEC responses owing to the internal electrostatic field. Upon adding TC, the photocurrent signal of CoS/CdS heterostructure was specifically activated due to the direct consumption of holes in CdS component by TC, resulting in significantly enhanced charge separation.

View Article and Find Full Text PDF

Visible-Light-Driven Methanol-To-Ethanol Conversion via Carbene Pathway by Frustrated Lewis Pairs.

J Am Chem Soc

March 2025

Department of Chemistry, and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

Carbenes are critical intermediates in organic chemistry, recognized for their exceptional reactivity and versatility. However, conventional methods for carbene generation are often associated with safety risks and hazardous procedures. This study presents a Ga-ZnO nanosheets photocatalyst with a (100) preferred orientation, featuring abundant refined frustrated Lewis pair (FLP) sites, excellent light absorption, and efficient charge transport properties.

View Article and Find Full Text PDF

Resistive switching (RS) memory devices with incorporated capabilities of data sensing, storing and processing are promising for artificial intelligence applications. In this respect, controlling resistance not only by electrical but also optical stimulations provides attractive opportunities for the development of novel neuromorphic sensing and computing systems. Here, we demonstrate the RS of Cu/parylene-PbTe/ITO memristive devices and the dependence of RS on optical excitation for efficient neuromorphic computing with high classification accuracy.

View Article and Find Full Text PDF

The periodical distribution of N and C atoms in carbon nitride (CN) not only results in localized electrons in each tri-s-triazine unit, but oxidation and reduction sites are in close contact spatially, resulting in severe carrier recombination. Herein, the hydrothermal method was first employed to synthesize carbon nitride (HCN), and then picolinamide (Pic) molecules were introduced at the edge of the carbon nitride so that the photo-generated electrons of the whole structure of the carbon nitride system were transferred from the center to the edge, which effectively promoted the separation of photo-generated carriers and inhibited the recombination of carriers in the structure. The introduced picolinamide not only changed the π-conjugated structure of the entire system but also acted as an electron-withdrawing group to promote charge transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!