Premature ovarian insufficiency (POI) is a multifactorial condition characterized by diminished ovarian function, granulosa cell (GC) apoptosis, and impaired ovarian angiogenesis, leading to infertility and long-term health complications. Despite its prevalence, effective therapeutic targets for POI remain limited. This study investigates the role of CCDC134 in maintaining ovarian reserve and promoting angiogenesis and its interaction with INHA in a mouse model of POI. Ovarian granulosa cells from POI patients and unaffected women were analyzed for apoptosis and CCDC134 expression. A cisplatin-induced mouse model of POI was used to evaluate the therapeutic potential of AAV-mediated ovary-specific overexpression of CCDC134. Ovarian morphology, hormonal levels, follicular development, granulosa cell viability, and angiogenesis were assessed. The interaction between CCDC134 and INHA was examined using co-immunoprecipitation, immunofluorescence, and molecular pathway analyses. CCDC134 expression was significantly downregulated in ovarian tissues and granulosa cells of POI patients and cisplatin-induced POI mice. CCDC134 overexpression improved ovarian morphology, restored follicular development across all stages, and enhanced reproductive outcomes in POI mice. Hormonal imbalances, including decreased AMH and E2 and elevated FSH and LH, were reversed following CCDC134 overexpression. Moreover, CCDC134 treatment significantly reduced GC apoptosis by downregulating pro-apoptotic markers (Caspase-3 and Bax) and upregulating anti-apoptotic Bcl-2. Angiogenesis was enhanced, as indicated by increased expression of CD34 and vWF, improved endothelial cell viability, and restored VEGF levels. Mechanistic studies revealed a direct interaction between CCDC134 and INHA, with CCDC134 promoting INHA expression and modulating apoptotic and angiogenic pathways. CCDC134 plays a critical role in maintaining ovarian reserve and promoting angiogenesis by directly interacting with INHA. Its overexpression restores ovarian function, mitigates granulosa cell apoptosis, and enhances angiogenesis in a mouse model of POI. These findings highlight the therapeutic potential of the CCDC134-INHA axis as a novel strategy for treating POI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-025-02092-2DOI Listing

Publication Analysis

Top Keywords

mouse model
16
ccdc134
12
ovarian
12
ovarian reserve
12
granulosa cell
12
model poi
12
poi
10
angiogenesis directly
8
directly interacting
8
interacting inha
8

Similar Publications

Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.

View Article and Find Full Text PDF

Magnetically targeted delivery of probiotics for controlled residence and accumulation in the intestine.

Nanoscale

March 2025

Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.

The effectiveness of orally delivered probiotics in treating gastrointestinal diseases is restricted by inadequate gut retention. In this study, we present a magnetically controlled strategy for probiotic delivery, which enables controlled accumulation and residence of probiotics in the intestine. The magnetically controlled probiotic is established by attaching amino-modified iron oxide (FeO-NH NPs) to polydopamine-coated GG (LGG@P) through electrostatic self-assembly and named as LGG@P@FeO.

View Article and Find Full Text PDF

Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Regulates Muscle Growth and Development by Targeting .

Cells

March 2025

Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!