A label-free surface-enhanced Raman scattering (SERS) sensor using optimal bimetallic Au@Ag nanocuboids (Au@Ag NCs) was developed for ultrasensitive detection of florfenicol residue in eggs. The Raman characteristic peaks of florfenicol detection were identified at 1145 cm and 1595 cm which were consistent with the theoretical Raman spectrum of florfenicol calculated by density functional theory. The Au@Ag NCs were optimized by changing the aspect ratio of Au nanorods and the thickness of Ag nanocuboids, achieving an enhancement factor of 1.69 × 10 for SERS signals. Under optimal conditions, the label-free SERS sensor demonstrated a broad linear range of 0.01 mg/kg to 100 mg/kg for florfenicol in real sample. The limit of detection of florfenicol in eggs was as low as 0.0410 μg/kg, and the recovery was 94.83% ~ 108.24%. Therefore, this label-free SERS sensor offers a rapid and sensitive approach for the trace detection of florfenicol residues in food safety monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-025-07076-2DOI Listing

Publication Analysis

Top Keywords

sers sensor
16
detection florfenicol
16
optimal bimetallic
8
bimetallic au@ag
8
ultrasensitive detection
8
florfenicol residue
8
residue eggs
8
au@ag ncs
8
label-free sers
8
florfenicol
7

Similar Publications

Janus Membrane-Based Wearable Dual-Channel SERS Sensor for Sweat Collection and Monitoring of Lactic Acid and pH Levels.

Anal Chem

March 2025

School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Ji'nan 250012, China.

Sweat, as a metabolic byproduct, encompasses a diverse array of molecular information pertinent to our physiological states and overall health. The extraction of minute quantities of sweat, coupled with sensitive monitoring and identification of its internal molecular components, constitutes an effective strategy for assessing bodily conditions. We engineer a Janus membrane utilizing electrospinning techniques for application on human skin to facilitate sweat collection.

View Article and Find Full Text PDF

Flexible substrates for sensing provide adaptable, lightweight, and highly sensitive platforms for detecting different substances. The flexibility of these substrates allows for seamless integration with complex shapes and dynamic surfaces, enabling monitoring in challenging conditions using methods such as surface-enhanced Raman spectroscopy (SERS). Here we outline a flexible metamaterial array sensor formed from plasmonic silver-coated nanoimprinted piezoelectric polyvinylidene fluoride film.

View Article and Find Full Text PDF

Au nanoparticle-engineered TiCT MXenes as a high-performance SERS platform for detection of organic pollutants.

Mikrochim Acta

March 2025

Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India.

The detection of organic pollutants at ultra-low concentrations is crucial for environmental monitoring, yet existing surface-enhanced Raman scattering (SERS) platforms often suffer from limited sensitivity, poor stability, and inconsistent signal reproducibility. To address these challenges, this study presents a high-performance SERS platform based on in situ gold (Au) nanoparticle-engineered TiCT MXenes. This novel approach enhances signal amplification and ensures long-term stability for pollutant detection.

View Article and Find Full Text PDF

The development of DNA rolling machines with high rolling efficiency for ratiometric biosensing is of great significance for the accurate diagnosis and evaluation of diseases. Herein, an interparticle DNA rolling machine constructed by well-oriented and ordered DNA nanorollers guided by tetrahedral DNA was exploited for high-efficiency lung tumor-related human neutrophil elastase (HNE) SERS ratiometric sensing. In this design, tetrahedral DNA with blocked DNAzyme was assembled on AuNPs to engineer well-oriented and ordered walking DNA nanorollers (WDNs) endowed with high collision efficiency and accessibility, significantly improving the reaction kinetics and rolling efficiency.

View Article and Find Full Text PDF

A label-free surface-enhanced Raman scattering (SERS) sensor using optimal bimetallic Au@Ag nanocuboids (Au@Ag NCs) was developed for ultrasensitive detection of florfenicol residue in eggs. The Raman characteristic peaks of florfenicol detection were identified at 1145 cm and 1595 cm which were consistent with the theoretical Raman spectrum of florfenicol calculated by density functional theory. The Au@Ag NCs were optimized by changing the aspect ratio of Au nanorods and the thickness of Ag nanocuboids, achieving an enhancement factor of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!