Background: Acute vestibular syndrome usually represents either vestibular neuritis (VN), an innocuous viral illness, or posterior circulation stroke (PCS), a potentially life-threatening event. The video head impulse test (VHIT) is a quantitative measure of the vestibulo-ocular reflex that can distinguish between these two diagnoses. It can be rapidly performed at the bedside by any trained healthcare professional but requires interpretation by an expert clinician. We developed machine learning models to differentiate between PCS and VN using only the VHIT.

Methods: We trained machine learning classification models using unedited head- and eye-velocity data from acute VHIT performed in an Emergency Room on patients presenting with acute vestibular syndrome and whose final diagnosis was VN or PCS. The models were validated using an independent test dataset collected at a second institution. We compared the performance of the models against expert clinicians as well as a widely used VHIT metric: the gain cutoff value.

Results: The training and test datasets comprised 252 and 49 patients, respectively. In the test dataset, the best machine learning model identified VN with 87.8% (95% CI 77.6%-95.9%) accuracy. Model performance was not significantly different (p = 0.56) from that of blinded expert clinicians who achieved 85.7% accuracy (75.5%-93.9%) and was superior (p = 0.01) to that of the optimal gain cutoff value (75.5% accuracy (63.8%-85.7%)).

Conclusion: Machine learning models can effectively differentiate PCS from VN using only VHIT data, with comparable accuracy to expert clinicians. They hold promise as a tool to assist Emergency Room clinicians evaluating patients with acute vestibular syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882619PMC
http://dx.doi.org/10.1007/s00415-025-12918-3DOI Listing

Publication Analysis

Top Keywords

machine learning
20
expert clinicians
16
learning models
12
acute vestibular
12
vestibular syndrome
12
vestibular neuritis
8
video head
8
head impulse
8
impulse test
8
differentiate pcs
8

Similar Publications

Background: Hypertension is a major global health issue and a significant modifiable risk factor for cardiovascular diseases, contributing to a substantial socioeconomic burden due to its high prevalence. In China, particularly among populations living near desert regions, hypertension is even more prevalent due to unique environmental and lifestyle conditions, exacerbating the disease burden in these areas, underscoring the urgent need for effective early detection and intervention strategies.

Objective: This study aims to develop, calibrate, and prospectively validate a 2-year hypertension risk prediction model by using large-scale health examination data collected from populations residing in 4 regions surrounding the Taklamakan Desert of northwest China.

View Article and Find Full Text PDF

Of rats and robots: A mutual learning paradigm.

J Exp Anal Behav

March 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, Turkey.

Robots are increasingly used alongside Skinner boxes to train animals in operant conditioning tasks. Similarly, animals are being employed in artificial intelligence research to train various algorithms. However, both types of experiments rely on unidirectional learning, where one partner-the animal or the robot-acts as the teacher and the other as the student.

View Article and Find Full Text PDF

Co-crystal engineering is of interest for many applications in pharmaceutical, chemistry and material fields, but rational design of co-crystals is still challenging. Although artificial intelligence has brought major changes in the decision-making process for materials design, yet limitations in generalization and mechanistic understanding remain. Herein, we sought to improve prediction of co-crystal by combining mechanistic thermodynamic modeling with machine learning.

View Article and Find Full Text PDF

Patients with hand dysfunction require joint rehabilitation for functional restoration, and wearable electronics can provide physical signals to assess and guide the process. However, most wearable electronics are susceptible to failure under large deformations owing to instability in the layered structure, thereby weakening signal reliability. Herein, an in-situ self-welding strategy that uses dynamic hydrogen bonds at interfaces to integrate conductive elastomer layers into highly robust electronics is proposed.

View Article and Find Full Text PDF

Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!