Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electroencephalographic (EEG) oscillations occur across a wide range of spatial and spectral scales, and analysis of neural rhythmic variability have attracted recent attention as markers of development, intelligence, cognitive states and neural disorders. Nonnegative matrix factorization (NMF) has been successfully applied to multi-subject electroencephalography (EEG) spectral analysis. However, existing group NMF methods have not explicitly optimized the individual-level EEG components derived from group-level components. To preserve EEG characteristics at the individual level while establishing correspondence of patterns across participants, we present a novel framework for obtaining subject-specific EEG components, which we term group-information guided NMF (GIGNMF). In this framework, group information captured by standard NMF at the group level is utilized as guidance to compute individual subject-specific components through a multi-objective optimization strategy. Specifically, we propose a three-stage framework: first, group-level consensus EEG patterns are derived using standard group NMF tools; second, an optimal procedure is implemented to determine the number of components; and finally, the group-level EEG patterns serve as references in a new one-unit NMF employing a multi-objective optimization solver. We test the performance of the algorithm on both synthetic signals and real EEG recordings obtained from Alzheimer's disease data. Our results highlight the feasibility of using GIGNMF to identify EEG spatiotemporal patterns and present novel individual electrophysiological characteristics that enhance our understanding of cognitive function and contribute to clinical neuropathological diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10548-025-01110-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!