Indirect spin-spin couplings ("J-couplings") lead to well-known multiplet patterns in nuclear magnetic resonance (NMR) spectra that are also observable in non-decoupled solid-state NMR spectra, if the J-coupling constant exceeds the linewidth. Such J-multiplet line shapes in the solid state might however be affected by spin diffusion (SD) on the passive nuclei. When the SD rate constant is fast compared to the J-coupling constant, the multiplet resolution can be lost due to a so-called "self-decoupling" mechanism as has been already reported in the context of decoupling and for proton SD in solid adamantane. We herein report on the influence of F SD on C-detected solid-state NMR spectra of a small organic molecule bearing a trifluoromethyl group. The target compound is the chiral α-(trifluoromethyl)lactic acid (TFLA). Enantiopure phases (() or (), respectively) of TFLA are composed of homochiral dimers whereas the racemic phase consists of heterochiral dimers in the solid state. Despite their structural similarity, the C line shapes of the CF group in cross-polarization spectra recorded at slow to medium magic-angle spinning (MAS) frequencies - in the range between 14.0 kHz and 60.0 kHz - differ substantially. By combining experimental observations, analytical calculations based on the Bloch-McConnell equations, and numerical spin-dynamics simulations, we demonstrate that differences in the F SD rate constant between racemic and enantiopure TFLA-phases significantly affect the respective solid-state C NMR spectral line shapes. Slowing down SD by increasing the MAS frequency restores the quartet line shape for both phases of TFLA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cp00275cDOI Listing

Publication Analysis

Top Keywords

solid-state nmr
16
nmr spectra
12
j-coupling constant
8
solid state
8
rate constant
8
phases tfla
8
nmr
5
influence fluorine
4
fluorine spin-diffusion
4
solid-state
4

Similar Publications

Revealed Preferential Short-Range Anion Ordering in Disordered RbMOF (M = Nb, Ta) Pyrochlore-Type Oxyfluorides.

Inorg Chem

March 2025

Institut des Molécules et Matériaux du Mans (IMMM)─UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.

Describing the crystal structure of disordered materials with mixed-occupancy crystallographic sites is essential for understanding their physicochemical properties and designing new materials tuned to their targeted functionalities. Here, we investigate the structure of RbMOF (M = Nb, Ta) pyrochlore-type oxyfluorides using a multimodal approach that combines experimental and computational techniques. Rietveld structural refinement of powder X-ray powder diffraction (PXRD) data confirmed that these oxyfluorides are isostructural, and their average crystal structure is disordered.

View Article and Find Full Text PDF

Whilst bis(trimethylsilyl)amide has been used extensively as a ligand across the periodic table, the chemistry of its heavier group 15 congeners is relatively underdeveloped. However, bis(trimethylsilyl)phosphide coordination chemistry has provided unique structural motifs and has also shown potential applications in catalysis, materials science, and bioinorganic chemistry. This review, which marks 55 years since the first report of a bis(trimethylsilyl)phosphide complex, provides a comprehensive overview of the synthesis, characterisation and reactivity of structurally authenticated s-, p-, d- and f-block metal complexes of this ligand, focusing on salient single crystal XRD and NMR spectroscopic data.

View Article and Find Full Text PDF

For computing the magnetic shielding in solids, density functional theory as implemented in a plane wave basis has proven to be a reasonably accurate and efficient framework, at least for lighter atoms through the third row of the periodic table. In materials with heavier atoms, terms not usually included in the electronic Hamiltonian can become significant, limiting accuracy. Here we derive and implement the zeroth-order regular approximation (ZORA) relativistic terms in the presence of both external magnetic fields and internal nuclear magnetic dipoles, to derive the ZORA-corrected magnetic shielding in the context of periodic boundary conditions and a plane wave basis.

View Article and Find Full Text PDF

Aggregation of the tau protein into cross-β amyloid fibrils is a hallmark of Alzheimer's disease (AD) and many other neurodegenerative disorders. Developing small molecules that bind these tau fibrils is important for the diagnosis and treatment of tauopathies. Here, we report the binding sites of a positron emission tomography (PET) ligand, PI-2620, to a recombinant tau construct that adopts the C-shaped AD fold.

View Article and Find Full Text PDF

0.5%Au supported on γ-AlOOH and γ-AlO was used for low temperature oxidation of CO and aromatic alcohols. Various characterization techniques, including X-ray diffraction, N adsorption, FT-IR spectroscopy, XPS, TEM, CO-TPD and solid-state MAS NMR, were employed to characterize these catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!