The role of l-serine and l-threonine in the energy metabolism and nutritional stress response of .

mSphere

Laboratory of Biochemistry of Trypanosomatids-LaBTryps, Department of Parasitology, Institute of Biomedical Science II-ICB II, University of São Paulo-USP, São Paulo, São Paulo, Brazil.

Published: March 2025

l-Serine and l-threonine have versatile roles in metabolism. In addition to their use in protein synthesis, these amino acids participate in the biosynthesis pathways of other amino acids and even phospholipids. Furthermore, l-serine and l-threonine can be substrates for a serine/threonine dehydratase (Ser/ThrDH), resulting in pyruvate and 2-oxobutyrate, respectively, thus being amino acids with anaplerotic potential. , the etiological agent of Chagas disease, uses amino acids in several biological processes: metacyclogenesis, infection, resistance to nutritional and oxidative stress, osmotic control, etc. This study investigated the import and metabolism of l-serine, l-threonine, and glycine in . Our results demonstrate that these amino acids are transported from the extracellular environment into cells through a saturable transport system that fits the Michaelis-Menten model. Our results show that l-serine and l-threonine can sustain epimastigote cell viability under nutritional stress conditions and stimulate oxygen consumption, maintaining intracellular ATP levels. Additionally, our findings indicate that serine plays a role in establishing the mitochondrial membrane potential in . Serine is also involved in energy metabolism via the serine-pyruvate pathway, which stimulates the production and subsequent excretion of acetate and alanine. Our results demonstrate the importance of l-serine and l-threonine in the energy metabolism of and provide new insights into the metabolic adaptations of this parasite during its life cycle.IMPORTANCE, the parasite responsible for Chagas disease, impacts 5-6 million individuals in the Americas and is rapidly spreading globally due to significant human migration. This parasitic organism undergoes a complex life cycle involving triatomine insects and mammalian hosts, thriving in diverse environments, such as various regions within the insect's digestive tract and mammalian cell cytoplasm. Crucially, its transmission hinges on its adaptive capabilities to varying environments. One of the most challenging environments is the insect's digestive tract, marked by nutrient scarcity between blood meals, redox imbalance, and osmotic stresses induced by the triatomine's metabolism. To endure these conditions, has developed a remarkably versatile metabolic network enabling it to metabolize sugars, lipids, and amino acids efficiently. However, the full extent of metabolites this parasite can thrive on remains incompletely understood. This study reveals that, beyond conventional carbon and energy sources (glucose, palmitic acids, proline, histidine, glutamine, and alanine), three additional metabolites (serine, threonine, and glycine) play vital roles in the parasite's survival during starvation. Remarkably, serine and threonine directly contribute to ATP production through a serine/threonine dehydratase enzyme not previously described in . The significance of this metabolic pathway for the parasite's survival sheds light on how metabolic networks aid in its endurance under extreme conditions and its ability to thrive in diverse metabolic settings.

Download full-text PDF

Source
http://dx.doi.org/10.1128/msphere.00983-24DOI Listing

Publication Analysis

Top Keywords

l-serine l-threonine
24
amino acids
24
energy metabolism
12
l-threonine energy
8
nutritional stress
8
serine/threonine dehydratase
8
chagas disease
8
insect's digestive
8
digestive tract
8
serine threonine
8

Similar Publications

Interleukin 24 (IL-24) is a tumor-suppressing protein currently in clinical trials. We previously demonstrated that IL-24 leads to apoptosis in cancer cells through protein kinase A (PKA) activation in human breast cancer cells. To better understand the mechanism by which IL-24 induces apoptosis, we analyzed the role of glycogen synthase kinase-3 beta (GSK3β), a highly conserved serine/threonine kinase in cancer cells and a downstream target of PKA.

View Article and Find Full Text PDF

Macrocyclic peptides, including depsipeptides, are an emerging new modality in drug discovery research. Tetraselide, an antifungal cyclic peptide isolated from a marine-derived filamentous fungus, possesses a unique amphiphilic structural feature consisting of five consecutive β-hydroxy-amino acid residues and fatty acid moieties. Because the structure elucidation of the naturally occurring product left six stereocenters ambiguous, we implemented bioinformatic analyses, chemical degradation studies and chiral pool fragment synthesis to identify two of the undetermined stereocenters.

View Article and Find Full Text PDF

Background: Cyclophosphamide (CTX) often induces oocyte and granulosa cell injury, leading to fertility loss in young female cancer survivors. Deciphering the mechanisms underlying follicular cell injury could offer novel insights into fertility preservation. Granulosa cells represent the most abundant cell type within the follicles and can be generally categorized as cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs).

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC), the most common type of esophageal cancer, characterized by low five-year survival rate, and concurrent chemoradiotherapy (CCRT) has been proposed to treat ESCC, while potential biomarkers for prognostic monitoring after optimized CCRT remains unknown.

Methods: Serum samples from 45 patients with ESCC were collected and categorized into three groups: Control (pre-CCRT), CCRT (during CCRT), and CCRT-1 M (one-month post-CCRT). The therapeutic effect was evaluated using CT imaging and established evaluation criteria.

View Article and Find Full Text PDF

BUB1 serves as a biomarker for poor prognosis in liver hepatocellular carcinoma.

BMC Immunol

March 2025

Department of Gastroenterology, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province, China.

Background: Hepatocellular carcinoma (HCC) is the most frequent kind of liver cancer with high morbidity and mortality rates worldwide. Altered expression of BUB1 (budding uninhibited by benzimidazole 1) gene leads to chromosome instability and aneuploidy. This study investigated the expression of BUB1 and its prognostic value as well as its correlation with immune cell infiltration and immune checkpoints in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!