A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent advances in MXene nanozyme-based optical and electrochemical biosensors for food safety analysis. | LitMetric

The importance of nanotechnology is increasing every day in different fields and, especially, the application of nanomaterials has attracted considerable attention in food safety. Among different nanomaterials, MXenes, which are two-dimensional (2D) transition metal-based layered materials made of nitrides and carbides, have revolutionized various fields as a cutting-edge scientific discovery in nanotechnology. These materials have been widely used in the structure of biosensors and sensors due to their excellent metallic conductivity, mechanical stability, optical absorbance, good redox capability, and higher heterogeneous electron transfer rate. In particular, the application of MXenes as nanozymes has highlighted their high performance to a great extent in biosensor domains. The growing interest in these nanozymes is attributed to their specific physicochemical features. The key enzymatic features of these materials include activities similar to oxidase, peroxidase, catalase, and superoxide dismutase. In this review, initially, several common synthesis methods of MXenes are presented, emphasizing their significant role as nanozymes in constructing efficient sensors. Subsequently, several common applications of MXene nanozymes in food safety analysis are delved into, including the detection of bacteria, mycotoxins, antibiotic residues, and pesticide residues, along with their applications in different electrochemical and optical biosensors. In addition, the gap, limitation, and future perspective of these novel nanozymes in food safety are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nr00066aDOI Listing

Publication Analysis

Top Keywords

food safety
16
safety analysis
8
nanozymes food
8
nanozymes
5
advances mxene
4
mxene nanozyme-based
4
nanozyme-based optical
4
optical electrochemical
4
electrochemical biosensors
4
food
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!