A novel magnetic hollowed CoFe@C-650 prism catalyst has been successfully prepared and applied in the N-alkylation of alcohols and amines through a hydrogen borrowing strategy. The catalyst demonstrates good to excellent activities in the reaction with a broad substrate scope to afford up to a 99% yield of target products. A preliminary mechanistic study reveals that a high valent Co species in the catalyst may promote the adsorption and conversion of alcohols, while the Fe species assists in hydrogenating the imine intermediates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5c00188 | DOI Listing |
Nanoscale
March 2025
Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
Manganese (Mn)-based materials have been extensively investigated for a wide range of biomedical applications owing to their remarkable catalytic chemistry, magnetic resonance imaging (MRI) capacity, biodegradability, low toxicity, and good biosafety. In this review, we first elaborate on the catalytic principle of Mn-based nanoenzymes for antitumor and antibacterial therapy, followed by a comprehensive discussion of the interesting structural design engineering strategies used to achieve multi-dimensional Mn-based nanoarchitectures, such as zero-dimensional (0D) nanoparticles, 1D nanotubes, 2D nanosheets, 3D hollow porous Mn ball, and core-shell nanostructures. Moreover, the therapeutic applications of different Mn-based nanoenzymes, including manganese dioxide (MnO)-based nanoenzymes that can trigger catalytic reactions, Mn-doped metal nanoenzymes and Mn-coordinated nanoenzymes that promote hydroxyl/reactive oxygen species (ROS) generation, and MnO-based micro/nanorobots that can effectively penetrate tumor tissues, are critically reviewed.
View Article and Find Full Text PDFInorg Chem
March 2025
School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China.
A novel magnetic hollowed CoFe@C-650 prism catalyst has been successfully prepared and applied in the N-alkylation of alcohols and amines through a hydrogen borrowing strategy. The catalyst demonstrates good to excellent activities in the reaction with a broad substrate scope to afford up to a 99% yield of target products. A preliminary mechanistic study reveals that a high valent Co species in the catalyst may promote the adsorption and conversion of alcohols, while the Fe species assists in hydrogenating the imine intermediates.
View Article and Find Full Text PDFAdv Healthc Mater
February 2025
Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR, 999077, P. R. China.
Chemical pollution, pathogenic bacteria, and bacterial biofilms pose significant threats to public health. Although various nanoplatforms with both catalytic and antibacterial activities have been developed, creating a remotely controllable nanorobot with precise targeting and propulsion capabilities remains a challenge. This study presents the fabrication of a hollow-structured FeO@AgAu@polydopamine (PDA) nanosphere, which demonstrated controllable catalytic activity and superior magnetically enhanced antibacterial and biofilm removal properties.
View Article and Find Full Text PDFACS Nano
February 2025
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.
Tin phthalocyanine (SnPc) has been studied on superconducting Pb(100) using scanning tunneling microscopy and spectroscopy. Isolated molecules adsorb with their Sn ion below (SnPc↓) or above (SnPc↑) the molecular plane. These geometries lead to different adsorption sites, molecular orientations, and energies of the frontier orbitals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2025
Department of Otolaryngology Head and Neck surgery, Zhongshan City People's Hospital, Zhongshan 528403, China.
Chemotherapy for oral squamous cell carcinoma (OSCC) is often marred by the development of multidrug resistance and systemic adverse effects. Metal ion interference therapy (MIIT) has risen as an innovative strategy to disrupt the intracellular metal ion equilibrium in tumor cells, potentially overcoming drug resistance. However, the effectiveness of cancer treatment that relies on delivering single metal ions to tumor site is often constrained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!