Status epilepticus (SE) is a life-threatening neurological emergency characterized by persistent seizures, leading to brain damage that increases the risk of recurrent seizures due to abnormal electrical impulses produced by damaged neurons. However, the molecular mechanism by which convulsive SE leads to neuronal damage is not completely understood. Cathepsin S (Ctss), a lysosomal cysteine protease, has been implicated in secondary injury after traumatic brain injury. This study sought to explore whether Ctss is also involved in SE-induced neuronal damage in the hippocampus. Immunohistochemistry and Western blotting were utilized to detect the expression of Ctss in the hippocampal subregions of male C57BL/6J mice at various times following kainic acid (KA)-induced SE. The reactivity of microglia was assessed using immunohistochemistry, and Fluoro-Jade C (FJC) staining was employed to identify damaged neurons. We found that the mature form of Ctss is barely observed in naïve adult (12-week-old) mouse hippocampus, but its expression is significantly evident at 50 weeks of age. In adult mice, the expression of both pro-and mature forms of Ctss in the hippocampal CA3 region was increased as early as 16 h following KA-induced SE. The increased Ctss immunoreactivity was mainly found in microglia following KA-induced SE. The damaged neurons visualized by FJC staining were prominent in the CA3 region at 16 h following KA-induced SE. Ctss knockdown did not affect KA-induced behavioral seizures but significantly reduced SE-induced microglia activation and neuronal damage. An increase in chemokine CX3C motif ligand 1 (CX3CL1) immunoreactivity on microglia was observed following KA-induced SE, and CX3C motif chemokine receptor 1 (CX3CR1) antagonist AZD8797 treatment significantly attenuated SE-induced microglia activation and neuronal damage. Altogether, these results indicate a crucial role of Ctss in SE-induced neuronal damage, possibly through CXC3L1-mediated microglial activation, and provide a new perspective for preventing SE-induced neuronal damage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.70037DOI Listing

Publication Analysis

Top Keywords

neuronal damage
28
damaged neurons
12
se-induced neuronal
12
damage
8
status epilepticus
8
ctss
8
ctss hippocampal
8
fjc staining
8
ca3 region
8
16 h ka-induced
8

Similar Publications

Patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, often present with severe psychiatric symptoms, yet the neuropathological mechanisms underlying their cognitive deficits remain insufficiently understood. In this study, we constructed an animal model using anti-NMDAR IgG purified from the serum of patients with anti-NMDAR encephalitis, and we used IgG obtained from healthy individuals as a control. Daily administration of anti-NMDAR IgG into the medial prefrontal cortex (mPFC) of mice for 7 days resulted in cognitive impairments resembling clinical symptoms, which spontaneously resolved 30 days after discontinuing the injections.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Half of DPN patients experience sensory deficits including loss of sensation and pain. Loss of sensation increases the risk of unnoticed foot injuries which combined with poor circulation and healing lead to amputation.

View Article and Find Full Text PDF

This study examined the antioxidant, anti-inflammatory, and neuroprotective effects of melatonin (MEL) against acrylamide (ACR)-induced neurotoxicity in Sprague-Dawley rats. The experimental groups included control, ACR, MEL10+ACR, MEL20+ACR, and MEL20. MEL at doses of 10 and 20 mg/kg, and ACR at 50 mg/kg, were administered intraperitoneally for 14 days.

View Article and Find Full Text PDF

Mitochondria are pivotal in sustaining oxidative balance and metabolic activity within neurons. It is well-established that mitochondrial dysfunction constitutes a fundamental pathogenic mechanism in neurodegeneration, especially in the context of Parkinson's disease (PD), this represents a promising target for therapeutic intervention. Ursodeoxycholic acid (UDCA), a clinical drug used for liver disease, possesses antioxidant and mitochondrial repair properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!