A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Paternal Obesity-Induced H3K27me3 Elevation Leads to MANF-Mediated Transgenerational Metabolic Dysfunction in Female Offspring. | LitMetric

Paternal lifestyle and environmental exposures can alter epigenetic changes in sperm and play a critical role in the offspring's future health, yet the underlying mechanisms remain elusive. The present study established a model of paternal obesity and found that the increased levels of H3K27me3 in sperm persist into the 8-cell embryo stage, resulting in a transgenerational decrease of Manf, which causes endoplasmic reticulum stress and activates the GRP78-PERK-EIF2α-ATF4-CHOP axis. This consequently leads to impaired glucose metabolism and apoptosis in the liver of female offspring. Based on these findings, the F0 mice are treated with 3-deazaneplanocin A, an EZH2 inhibitor, which successfully prevented metabolic dysfunction in F0 mice of the high-fat diet (HFD) group. Meanwhile, intravenous injection of recombinant human MANF in F1 female offspring can successfully rescue the metabolic dysfunction in the HFD-F1 group. These results demonstrate that paternal obesity triggers transgenerational metabolic dysfunction through sperm H3K27me3-dependent epigenetic regulation. The present study also identifies the H3K27me3-MANF pathway as a potentially preventive and therapeutic strategy for diabetes, although further studies are needed to validate its clinical applicability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202415956DOI Listing

Publication Analysis

Top Keywords

metabolic dysfunction
16
female offspring
12
transgenerational metabolic
8
paternal obesity
8
paternal
4
paternal obesity-induced
4
obesity-induced h3k27me3
4
h3k27me3 elevation
4
elevation leads
4
leads manf-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!