Elevated glucose metabolism is a prominent characteristic of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). However, the efficacy of inhibiting a single target of glucose metabolism in FLS using small molecular inhibitors is limited for RA treatment. Herein, the synergistic inhibition of FLS' survival, proliferation, and activation by combining two glucose metabolism inhibitors, diclofenac (DC) and lonidamine (LND) was first verified. Subsequently, DC and LND were individually conjugated to cystamine-modified hyaluronic acid (HA) to prepare two polymer-prodrug conjugates. A HAP-1 peptide-modified dual polymer-prodrug conjugates-assembled nanoparticles system (NP) was further tailored in the optimal synergistic ratio for targeted and synergistic metabolic modulation of FLS to alleviate RA symptoms. Upon targeted uptake by FLS in inflamed joints, NP released DC and LND within the intracellular reductive microenvironment, where DC hinders glucose uptake and LND suppresses glycolytic enzymes to eliminate FLS synergistically. Additionally, the secretion of lactic acid and pro-inflammatory factors from FLS were reduced, thereby disrupting the crosstalk between FLS and pro-inflammatory macrophages. Finally, NP demonstrated promising efficacy in a mouse model of collagen-induced arthritis (CIA). Overall, this research provides valuable insights into novel therapeutic strategies for the safe and effective of treatment RA through targeted and synergistic metabolic modulation of FLS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873624 | PMC |
http://dx.doi.org/10.1016/j.apsb.2024.11.007 | DOI Listing |
J Immunol
January 2025
Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Laboratorio 1. Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Salamanca 37007, Spain.
We evaluated the in vivo therapeutic efficacy and tolerability of BI-3406-mediated pharmacological inhibition of SOS1 in comparison to genetic ablation of this universal Ras-GEF in various KRAS-dependent experimental tumor settings. Contrary to the rapid lethality caused by SOS1 genetic ablation in SOS2 mice, SOS1 pharmacological inhibition by its specific inhibitor BI-3406 did not significantly affect animal weight/viability nor cause noteworthy systemic toxicity. Allograft assays using different KRAS cell lines showed that treatment with BI-3406 impaired RAS activation and RAS downstream signaling and decreased tumor burden and disease progression as a result of both tumor-intrinsic and -extrinsic therapeutic effects of the drug.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
March 2025
School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
Ectoine, a cytoprotective compound derived from bacteria and categorized as a postbiotic, is increasingly recognized as a viable alternative to traditional therapeutic agents, frequently presenting considerable side effects. This extensive review underscores the effectiveness of ectoine as a postbiotic in managing conditions such as rhinosinusitis, atopic dermatitis, and allergic rhinitis, all while demonstrating a commendable safety profile. Its capacity to establish robust hydrogen bonds without compromising cellular integrity supports its potential application in anti-aging and cancer prevention strategies.
View Article and Find Full Text PDFMed Oncol
March 2025
School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
This study unveils PKM2 as a master metabolic coordinator in triple-negative breast cancer (TNBC), governing the glycolysis-lipolysis balance through the AMPK/KLF4/ACADVL axis. We demonstrate stage-specific PKM2 upregulation in TNBC, with CRISPR/Cas9 knockout inducing dual metabolic reprogramming-suppressed glycolysis and activated lipid catabolism. Mechanistically, PKM2 ablation triggers AMPK-dependent nuclear translocation of KLF4, which directly activates ACADVL (mitochondrial β-oxidation rate-limiting enzyme), explaining lipid droplet depletion.
View Article and Find Full Text PDFCurr Nutr Rep
March 2025
Departamento de Investigación y Desarrollo, Good Research and Science (GRS), Avenida Ramón Picarte 780, 5090000, Valdivia, Chile.
Purpose Of Review: Veganism, characterized by the exclusion of all animal-derived products, has grown in popularity due to ethical, environmental, and health considerations. However, vegan athletes often face unique nutritional challenges related to dietary deficiencies of critical nutrients such as proteins, vitamin B12, iron, calcium, and omega-3 fatty acids, among others. This narrative review aims to explore the efficacy and benefits of vegan-friendly supplements specifically tailored to athletic performance, focusing on essential micronutrients, ergogenic aids, and nutrient bioavailability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!