Layered hybrid perovskites are intensively researched today as highly tunable materials for efficient light harvesting and emitting devices. In classical layered hybrid perovskites, the structural rigidity mainly stems from the crystalline inorganic sublattice, whereas the organic sublattice has a minor contribution to the rigidity of the material. Here, we report two layered hybrid perovskites, (BTa)PbI and (FBTa)PbI, which possess substantially more rigid organic layers due to hydrogen bonding, π-π stacking, and dipole-dipole interactions. These layered perovskites are phase stable under elevated pressures up to 5 GPa and upon temperature lowering down to 80 K. The organic layers, composed of benzotriazole-derived ammonium cations, are among the most rigid in the field of layered hybrid perovskites. We characterize structural rigidity using single-crystal X-ray diffraction during compression up to 5 GPa. Interestingly, the enhanced rigidity of the organic sublattice does not seem to transfer to the inorganic sublattice, leading to an uncommon material configuration with rigid organic layers and deformable inorganic layers. The deformability of the inorganic sublattice is apparent from differences in optical properties between the crystal bulk and surface. Supported by first-principles calculations, we assign these differences to energy transfer processes from the surface to the bulk. The deformability also leads to reversible piezochromism due to shifting of the photoluminescence emission peak with increasing pressure up to 5 GPa, and thermochromism due to narrowing of the photoluminescence emission linewidth with decreasing temperature down to 80 K. This raises the possibility of applying these phase-stable layered hybrid perovskite materials in temperature and/or pressure sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874244 | PMC |
http://dx.doi.org/10.1039/d4sc06637e | DOI Listing |
Small Methods
March 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
The modern era demands multifunctional materials to support advanced technologies and tackle complex environmental issues caused by these innovations. Consequently, material hybridization has garnered significant attention as a strategy to design materials with prescribed multifunctional properties. Drawing inspiration from nature, a multi-scale material design approach is proposed to produce 3D-shaped hybrid materials by combining chaotic flows with direct ink writing (ChDIW).
View Article and Find Full Text PDFAdv Mater
March 2025
Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504, Strasbourg, F-67000, France.
2D van der Waals materials and their heterostructures are a fantastic playground to explore emergent phenomena arising from electronic quantum hybridization effects. In the last decade, the spin-dependant hybridization effect pushed this frontier further introducing the magnetic proximity effect as a promising tool for spintronic applications. Here the uncharted proximity-controlled magnetoelectric effect in EuO/graphene heterostructure is unveiled.
View Article and Find Full Text PDFInorg Chem
March 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
Integrating mixed electron donor (D) and electron acceptor (A) ligands into metal-organic frameworks (MOFs) is an effective yet relatively unexplored approach for improving the anode performance of hybrid lithium-ion capacitors (HLICs). In this study, using an electron donor 2,6-bis(4'-pyridyl)tetrathiafulvalene and an electron acceptor ,'-bis(5-isophthalic acid) naphthalene diimide as ligands, a new Zn-TTF/NDI MOF () is constructed as a pseudocapacitive anode of HLICs. Crystallographic characterization revealed that MOF adopts a two-dimensional (2D) coordination network.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Chemistry, University College Cork, Cork T12 YN60, Ireland.
The development of size- and shape-controlled nanomaterials is essential to tailor their properties and performance for wide-ranging applications from catalysis to sensing. Solid-state synthesis of nanostructures is attractive from a sustainability perspective, but they typically lack the desired size and shape control at small-scale dimensions. This work shows that colloidal precursors can be used in a solid-state route to form hybrid core-shell nanostructures with simultaneous size and morphology control.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
In modern engineering applications, the use of sustainable materials and eco-friendly methods has become increasingly important. Wood joints, especially those strengthened with bio-adhesive, have attracted considerable attention due to their inherent environmental benefits and desirable mechanical properties. Compared to traditional joining methods, adhesive joints offer unique advantages such as improved load distribution, reduced stress concentration, and enhanced aesthetic appeal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!