Background And Aims: The increasing elderly population presents significant challenges for healthcare systems, necessitating innovative solutions for continuous health monitoring. This study develops and validates an IoT-based elderly monitoring system designed to enhance the quality of life for elderly people. The system features a robust Android-based user interface integrated with the Firebase cloud platform, ensuring real-time data collection and analysis. In addition, a supervised machine learning technology is implemented to conduct prediction task of the observed user whether in "stable" or "not stable" condition based on real-time parameter.
Methods: The system architecture adopts the IoT layer including physical layer, network layer, and application layer. Device validation is conducted by involving six participants to measure the real-time data of heart-rate, oxygen saturation, and body temperature, then analysed by mean average percentage error (MAPE) to define error rate. A comparative experiment is conducted to define the optimal supervised machine learning model to be deployed into the system by analysing evaluation metrics. Meanwhile, the user satisfaction aspect evaluated by the terms of usability, comfort, security, and effectiveness.
Results: IoT-based elderly health monitoring system has been constructed with a MAPE of 0.90% across the parameters: heart-rate (1.68%), oxygen saturation (0.57%), and body temperature (0.44%). In machine learning experiment indicates XGBoost model has the optimal performance based on the evaluation metrics of accuracy and F1 score which generates 0.973 and 0.970, respectively. In user satisfaction aspect based on usability, comfort, security, and effectiveness achieving a high rating of 86.55%.
Conclusion: This system offers practical applications for both elderly users and caregivers, enabling real-time monitoring of health conditions. Future enhancements may include integration with artificial intelligence technologies such as machine learning and deep learning to predict health conditions from data patterns, further improving the system's capabilities and effectiveness in elderly care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873372 | PMC |
http://dx.doi.org/10.1002/hsr2.70498 | DOI Listing |
Ann Med
December 2025
Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China.
Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.
Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.
J Cell Mol Med
March 2025
Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China.
The purpose of this study was to recognise predictive biomarkers and explore the promising therapeutic targets of AD with depression. We confirmed a positive correlation between AD and depression through MR Analysis. Through WGCNA analysis, we identified 1569 genes containing two modules, which were most related to AD.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
The relationship between the structure and function of condensed matter is complex and changeable, which is especially suitable for combination with machine learning to quickly obtain optimized experimental conditions. However, little research has been done on the effect of temperature on condensed matter and how it affects device performance because the difference between the in situ physical property parameters (which are lowered by the surface tension and mixing entropy) and the basic parameters of the bulk makes accurate AI predictions difficult. In this work, P3HT/ITIC was chosen as the donor/acceptor material for the active layer of organic phototransistors (OPTs).
View Article and Find Full Text PDFJ Prev Alzheimers Dis
March 2025
Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: The swift rise in the prevalence of Alzheimer's disease (AD) alongside its significant societal and economic impact has created a pressing demand for effective interventions and treatments. However, there are no available treatments that can modify the progression of the disease.
Methods: Eight AD brain tissues datasets and three blood datasets were obtained.
Handb Clin Neurol
March 2025
University of Michigan, Ann Arbor, MI, United States.
Age differences in brain hemispheric asymmetry have figured prominently in the neuropsychology of aging. Here, a broad overview of these empirical and theoretical approaches is provided that dates back to the 1970s and continues to the present day. Methodological advances often brought new evidence to bear on older ideas and promoted the development of new ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!