A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of Recovered Carbon Black from Waste Tires in Triple Mesoscopic Stack Perovskite Solar Cells. | LitMetric

Use of Recovered Carbon Black from Waste Tires in Triple Mesoscopic Stack Perovskite Solar Cells.

ACS Sustain Resour Manag

Energy Materials Laboratory, School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.

Published: February 2025

This research addresses critical challenges in the photovoltaic (PV) industry to achieve net-zero greenhouse gas emissions by 2050, amidst geopolitical semiconductor supply risks and escalating volumes of PV waste. We demonstrate the opportunity to address these challenges through the design of PV cells which are compatible with a circular economy. In this proof-of-concept study, unpurified locally sourced recovered carbon black (rCB) from waste tires was integrated into the mesoporous carbon layer of triple mesoscopic perovskite solar cells as a sustainable alternative to virgin carbon sources, and comparable efficiencies (9.98%) to commercial carbon paste benchmarks (10.4%) were attained. Key findings reveal that the presence of sulfur, silica, and zinc oxide contaminants only affected performance and durability marginally. While sulfur enhanced perovskite crystallization, as evidenced by an increased fill factor, it potentially influenced the absorber's valence band maximum, slightly dropping the open-circuit voltage. Silica and zinc oxide exacerbated moisture ingress under UK weather conditions, as revealed by outdoor testing, which accelerated degradation post-breaching of the encapsulant. Such degradation could be mitigated through effective encapsulation. Although further research is crucial to maximize performance and device longevity, the feasibility of using locally sourced rCB in PV technology has been demonstrated. This approach could support regional energy resilience and sustainability objectives within a circular economy framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874465PMC
http://dx.doi.org/10.1021/acssusresmgt.4c00422DOI Listing

Publication Analysis

Top Keywords

recovered carbon
8
carbon black
8
waste tires
8
triple mesoscopic
8
perovskite solar
8
solar cells
8
circular economy
8
locally sourced
8
silica zinc
8
zinc oxide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!