Significance: The incidence of keratinocyte carcinomas (KCs) is increasing every year, making the task of developing new methods for KC early diagnosis of utmost medical and economical importance.

Aim: We aim to evaluate the KC diagnostic aid performance of an optical spectroscopy device associated with a machine-learning classification method.

Approach: We present the classification performance of autofluorescence and diffuse reflectance optical spectra obtained from 131 patients on four histological classes: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis (AK), and healthy (H) skin. Classification accuracies obtained by support vector machine, discriminant analysis, and multilayer perceptron in binary- and multi-class modes were compared to define the best classification pipeline.

Results: The accuracy of binary classification tests was to discriminate BCC or SCC from H. For AK versus other classes, the classification achieved a 65% to 75% accuracy. In multiclass (three or four classes) classification modes, accuracy reached 57%. Fusion of decisions increased classification accuracies (up to 10 percentage point-increase), proving the interest of multimodal spectroscopy compared with a single modality.

Conclusions: Such levels of classification accuracy are promising as they are comparable to those obtained by general practitioners in KC screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877879PMC
http://dx.doi.org/10.1117/1.JBO.30.3.035001DOI Listing

Publication Analysis

Top Keywords

classification
10
diffuse reflectance
8
cell carcinoma
8
classification accuracies
8
classes classification
8
machine learning-based
4
learning-based classification
4
classification spatially
4
spatially resolved
4
resolved diffuse
4

Similar Publications

Decoding Microglial Polarization and Metabolic Reprogramming in Neurodegenerative Diseases: Implications for Disease Progression and Therapy.

Aging Dis

February 2025

Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.

As the resident macrophages of the brain, microglia are crucial immune cells specific to the central nervous system (CNS). They constantly surveil their surroundings and trigger immunological reactions, playing a key role in various neurodegenerative diseases (ND). As illnesses progress, microglia exhibit multiple phenotypes.

View Article and Find Full Text PDF

The Histomorphology to Molecular Transition: Exploring the Genomic Landscape of Poorly Differentiated Epithelial Endometrial Cancers.

Cells

March 2025

SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa.

The peremptory need to circumvent challenges associated with poorly differentiated epithelial endometrial cancers (PDEECs), also known as Type II endometrial cancers (ECs), has prompted therapeutic interrogation of the prototypically intractable and most prevalent gynecological malignancy. PDEECs account for most endometrial cancer-related mortalities due to their aggressive nature, late-stage detection, and poor response to standard therapies. PDEECs are characterized by heterogeneous histopathological features and distinct molecular profiles, and they pose significant clinical challenges due to their propensity for rapid progression.

View Article and Find Full Text PDF

Muscadine grapes are renowned for their unique traits, natural disease resistance, and rich bioactive compounds. Despite extensive research on their phytochemical properties, microbial communities, particularly endophytic bacteria, remain largely unexplored. These bacteria play crucial roles in plant health, stress tolerance, and ecological interactions.

View Article and Find Full Text PDF

This review focuses on the anatomic and radiographic characteristics of the pediatric proximal femur and the advantages and disadvantages of different protocols for the management of pediatric femoral neck fractures (PFNFs) in terms of fracture classification, reduction methods, reduction quality and fixation methods, with the goal of proposing an optimal treatment protocol for PFNFs to reduce the incidence of postoperative complications. The anatomic and radiographic characteristics of the pediatric proximal femur, including the presence of an active growth plate, an immature femoral calcar, greater trabecular density and plasticity and a relatively immature blood supply are very different from those of the adult proximal femur. Treatment protocols for PFNFs must differ from those for adult femoral neck fractures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!