Background: Pedicle screw fixation using the cortical bone trajectory (CBT) enhances stability by engaging cortical bone, offering a valuable alternative to the traditional pedicle screw trajectory (TT). This study used finite element analysis to compare L4-5 instrumentation with CBT and TT screws, investigating whether the increased cortical bone engagement in CBT improves stability but makes it more susceptible to fatigue failure.
Methods: A L3-sacrum model was generated using anonymized CT patient data, validated against existing studies, showing consistent ROM (range of motion) values. A mono-segmental L4-5 instrumentation with an interbody fusion cage was configured with both TT and CBT models, differentiated for healthy and osteoporotic bone (reduced Young's modulus). Both models were exposed to simulated biomechanical loading conditions (compression, flexion, extension, lateral bending, and rotation) to calculate screw loosening and breakage risk. Screw loosening was assessed by measuring micro-movements within the screw hole, while screw breakage was evaluated based on maximum stress values and their frequency at the same locations.
Results: In both healthy and osteoporotic bone, the CBT model exhibited smaller micro-movements compared to the TT model across all motions. For maximum stress in healthy bone, CBT showed lower stress during right rotation but higher stress in the other six motions. In osteoporotic bone, CBT stress exceeded TT stress in all conditions. The TT model in healthy bone showed stress concentrations at three locations, while CBT distributed stress across five sites. In osteoporotic bone, CBT showed stress at three locations, while TT distributed stress at four. Notably, in the TT model, maximum stress occurred at the screw head in six of seven movements, whereas in the CBT model, three movements showed maximum stress at the screw head and three at the screw tail.
Conclusion: CBT screws, by traversing three cortical layers, achieve greater integration with the vertebral bone compared to TT screws, thus reducing the risk of screw loosening. Although this increases the maximum stress on the screws, the stress is more evenly distributed, with the screw tail helping to reduce the risk of breakage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876142 | PMC |
http://dx.doi.org/10.3389/fbioe.2025.1541114 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care, Changsha 410008.
Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.
View Article and Find Full Text PDFEur J Dent
March 2025
Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands.
Objectives: This article evaluates the marginal and internal gap, interfacial volume, and fatigue behavior in computer-aided design-computer-aided manufacturing (CAD-CAM) restorations with different designs (crowns or endocrowns) made from lithium disilicate-based ceramic (LD, IPS e.max CAD, Ivoclar AG) or resin composite (RC, Tetric CAD, Ivoclar AG).
Materials And Methods: Simplified LD and RC crowns (-C) and endocrowns (-E) were produced ( = 10) using CAD-CAM technology, through scanning (CEREC Primescan, Dentsply Sirona) and milling (CEREC MC XL, Dentsply Sirona), and then adhesively bonded to fiberglass-reinforced epoxy resin.
Soc Sci Med
January 2025
Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom.
Background: Financial stress is an important source of chronic stress and has been associated with cognitive and physical impairments. The goal of this study was to investigate whether financial stress is associated with cognitive and physical impairment and their combination, the role of potential modifiable factors and potential sex differences.
Methods: The Cardiovascular Risk Factors, Aging, and Dementia population-based cohort study from Finland was used (n = 1497) (baseline data collected 1972-1987, mean age 50 years).
PLoS One
March 2025
Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.
This study investigated the effects of mental fatigue on rate of force development (RFD) and peak force during an isometric mid-thigh pull (IMTP), as well as its impact on muscle activation measured by electromyography (EMG) median frequency. Sixteen healthy, resistance-trained males completed two sessions: a control condition and a mentally fatigued state induced by a 30-minute modified Stroop task. IMTP performance and muscle activation were assessed before and after the mental fatigue task.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!