Background: Proximal sciatic nerve injuries are a challenge to treat due to the limited options for donor nerves and the long distance needed for regeneration.

Methods: In our cadaveric study using five human cadavers, we aimed to evaluate the feasibility of transferring the tibial and common peroneal components of the sciatic nerve to the femoral nerve motor branches of the vastus medialis (VM) and vastus lateralis without the need for interposition nerve graft. The femoral nerve branches of the VM and lateralis were exposed anteriorly. The sciatic nerve was exposed posteriorly and passed through a narrow window within the adductor magnus and medial to the femur. The sciatic nerve was then separated into its tibial and peroneal components, which were then coapted to the VM and lateralis motor branches of the femoral nerve.

Results: Using the entire tibial and peroneal components of the sciatic nerve, we were able to gain more length and directly coapt the femoral nerve branches without utilizing interposition grafts. The disadvantage of this technique is suturing to a mixed nerve with motor and sensory components, which could compromise functional outcomes. Further studies are needed to determine how the procedure will impact a patient's gait cycle.

Conclusion: Clinical application is needed to determine preliminary outcomes before widespread utilization of this technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878700PMC
http://dx.doi.org/10.25259/SNI_60_2025DOI Listing

Publication Analysis

Top Keywords

sciatic nerve
24
peroneal components
12
femoral nerve
12
nerve
11
components sciatic
8
nerve motor
8
motor branches
8
nerve branches
8
tibial peroneal
8
needed determine
8

Similar Publications

Peripheral nerve tissue engineering is a field that uses cells, growth factors and biological scaffold material to provide a nutritional and physical support in the repair of nerve injuries. The specific properties of injectable human amniotic membrane-derived hydrogel including growth factors as well as anti-inflammatory and neuroprotective agents make it an ideal tool for nerve tissue repair, and metformin may also aid in nerve regeneration. The aim of this study was to investigate the effects of hydrogel derived from amniotic membrane (AM) along with metformin (MET) administration in the repair of sciatic nerve injury in male rats.

View Article and Find Full Text PDF

Background: Osseointegration (OI) has revolutionized prosthetic rehabilitation for amputees. Despite its contributions, postamputation pain remains a significant problem. This study aims to investigate the role of sciatic nerve regenerative peripheral nerve interface (RPNI) in patients undergoing transfemoral OI, focusing on its impact on pain and prosthetic wear.

View Article and Find Full Text PDF

Introduction: The polyol pathway is responsible for the metabolism of almost one-third of the total glucose in people with chronic diabetes. Moreover, it causes complications in organs that rely on aldose reductase (AR) as an enzyme. The purpose of this research was to examine the in vitro and in vivo effects of a flavonoid-rich ethyl acetate fraction of a methanolic extract of Ficus carica Lam.

View Article and Find Full Text PDF

Background: The CXC motif chemokine ligand 8 (CXCL8)-CXC motif chemokine receptor 1/2 (CXCR1/2) axis has been implicated in type 1 diabetes mellitus (T1DM). Its actions on non-immune cells may also contribute to T1DM-associated complications, including painful diabetic peripheral neuropathy (DPN) and diabetic retinopathy (DR).

Methods: We assessed the efficacy of early (4-8 weeks) or late (8-12 weeks) daily ladarixin (LDX) for the treatment of streptozotocin (STZ)-induced T1DM and the related complications of DPN or DR in male rats.

View Article and Find Full Text PDF

Photobiomodulation (PBM) has demonstrated potential in promoting peripheral nerve regeneration. However, there is a limited and inconclusive study on the application of light-emitting diode (LED) for nerve injury repair. In this study, we designed an 807-nm LED device with high luminous uniformity to investigate the effects of LED-based PBM on peripheral nerve injury repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!