A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulating nociception networks: the impact of low-intensity focused ultrasound on thalamocortical connectivity. | LitMetric

Pain engages multiple brain networks, with the thalamus serving as a critical subcortical hub. This study aims to explore the effects of low-intensity transcranial focused ultrasound-induced suppression on the organization of thalamocortical nociceptive networks. We employed MR-guided focused ultrasound, a potential non-invasive therapy, with real-time ultrasound beam localization feedback and fMRI monitoring. We first functionally identified the focused ultrasound target at the thalamic ventroposterior lateral nucleus by mapping the whole-brain blood oxygenation level-dependent responses to nociceptive heat stimulation of the hand using fMRI in each individual macaque monkey under light anaesthesia. The blood oxygenation level-dependent fMRI signals from the heat-responsive thalamic ventroposterior lateral nucleus were analysed to derive thalamocortical effective functional connectivity network using the psychophysical interaction method. Nineteen cortical regions across sensorimotor, cognitive, associative and limbic networks exhibited strong effective functional connectivity to the thalamic ventroposterior lateral during heat nociceptive processing. Focused ultrasound-induced suppression of heat activity in the thalamic ventroposterior lateral nucleus altered nociceptive responses in most of the 19 regions. Data-driven hierarchical clustering analyses of blood oxygenation level-dependent time courses across all thalamocortical region-of-interest pairs identified two effective functional connectivity subnetworks. The concurrent suppression of thalamic heat response with focused ultrasound reorganized these subnetworks and modified thalamocortical connection strength. Our findings suggest that the thalamic ventroposterior lateral nucleus has extensive and causal connections to a wide array of cortical areas during nociceptive processing. The combination of MR-guided focused ultrasound with fMRI enables precise dissection and modulation of nociceptive networks in the brain, a capability that no other device-based neuromodulation methods have achieved. This presents a promising non-invasive tool for modulating pain networks with profound clinical relevance. The robust modulation of nociceptive effective functional connectivity networks by focused ultrasound strongly supports the thalamic ventroposterior lateral as a viable target for pain management strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878384PMC
http://dx.doi.org/10.1093/braincomms/fcaf062DOI Listing

Publication Analysis

Top Keywords

focused ultrasound
24
thalamic ventroposterior
24
ventroposterior lateral
24
lateral nucleus
16
effective functional
16
functional connectivity
16
blood oxygenation
12
oxygenation level-dependent
12
focused
8
focused ultrasound-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!