A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of nanoscale zero-valent iron loaded biochar on the fate of phenanthrene in soil-radish ( L) system. | LitMetric

Nanoscale zero-valent iron loaded on biochar (nZVI@BC) has been proven to be effective in activating persulfate to remediate soil organic pollutants. However, studies on subsequent plant growth and microbial community changes in remediated soil remain limited. In this study, nZVI@BC, nZVI, and nanoscale biochar (nBC) were ball-mill produced and applied as amendments in pot experiments with PAH-contaminated soil to investigate their impacts on soil-crop (radish, L.) systems, and the widely distributed phenanthrene (Phe) was selected as model pollutant. The results indicate that nZVI@BC could induce more (75%) Phe accumulation in radish compared to the control treatment, but did not result in significant differences in plant biomass or enzyme activity. In Phe non-contaminated treatments, the Fe content of radish shoots increased from 86.87 ± 5.61 mg/kg DW without material application to 125.20 ± 11.93 mg/kg DW with nZVI@BC, while no significant differences were observed in roots. nZVI@BC and nBC increased the non-desorbed fraction of PAHs with low bio-availability by 13.6% and 10.2%, respectively, after 45 days compared to the control treatment. Illumina MiSeq sequencing revealed that nZVI@BC did not adversely affect the richness and diversity of soil microbial communities. Instead, it promoted the enrichment of bacteria related to the degradation of organic pollutants, such as and . The findings suggest that nZVI@BC after chemical oxidation remediation might be harmful to subsequent plants and ecosystems but much better than nZVI alone. The amount of nZVI@BC should be accurately calculated before chemical oxidation remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879671PMC
http://dx.doi.org/10.1016/j.eehl.2025.100134DOI Listing

Publication Analysis

Top Keywords

nanoscale zero-valent
8
zero-valent iron
8
iron loaded
8
loaded biochar
8
nzvi@bc
8
organic pollutants
8
compared control
8
control treatment
8
chemical oxidation
8
oxidation remediation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!