The recognition and binding via receptor-ligand interactions on cell membranes often weaken in complex environments, such as whole blood samples from cancer patients, making disease diagnosis and treatment evaluation unfavorable. Constructing multivalent ligands with sufficient fluid stability in complex environments remains a challenge. Herein, we develop a tetrahedral DNA framework (TDF) ensembled multivalent aptamers (TEA, n = 1-3) with programmable ligands size, enabling efficient capture of circulating tumor cells (CTCs) and accurate monitoring of clinical treatment progress. The precisely structured TEA ensures the size-matching and cooperative hybridization with epithelial cell adhesion molecule (EpCAM) on cell membrane. Compared to traditional aptamer approach, the dissociation constants (K) of TEA exhibits ∼20-fold growth in serum due to its precise size and rigid DNA framework. This high-affinity interaction significantly enhances capture efficiency by improving fluid stability of TEA and magnetic beads complex in complex environment. In addition, this CTC detection strategy is applied for clinical tumor treatment evaluation and progress monitoring in liver cancer patient samples, achieving an accuracy of ∼83.3% in classifying patients as complete or partial responses (CR/PR). Overall, this strategy will strongly promote potential clinical application of DNA framework for cancer diagnosis and disease progression monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202425252 | DOI Listing |
Int J Biol Macromol
March 2025
Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas (IITEMA, CONICET), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto 5800, Córdoba, Argentina. Electronic address:
Lactoferrin, a multifunctional glycoprotein with significant biological properties, presents significant potential for the prevention and treatment of infectious diseases. However, the effectiveness of oral Lactoferrin is limited by its susceptibility to degradation in harsh stomach conditions, reducing its bioavailability and therapeutic efficacy. To address this challenge, this study employs Chitosan/Alginate microparticles to enhance Lactoferrin stability and antibacterial activity.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
This study explores the correlation of contaminants of emerging concern (CECs) in wastewater effluents using liquid chromatography (LC), supercritical fluid chromatography (SFC), and comprehensive two-dimensional gas chromatography (GC × GC) with derivatization, all coupled to high-resolution mass spectrometry (HRMS). Over 300 compounds, including frequently overlooked highly polar and nonpharmaceutical CECs, were identified. Monitoring programs mainly focus on reducing variability and assessing pollution in wastewater treatment plant (WWTP) effluents under dry weather conditions, often neglecting wet-weather discharges.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Ministry of Education Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons.
View Article and Find Full Text PDFFlow Meas Instrum
March 2025
Fluid Metrology Group, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899.
Numerous process gases are used in the production of semiconductor chips. Accurate metering of these gases into process chambers is critical for maximizing device throughput and yield. A national flow standard for semiconductor process gases does not exist, forcing the industry to rely on approximate "meter factors" to extrapolate a meter calibration carried out with nitrogen to the actual process gas.
View Article and Find Full Text PDFSci Rep
March 2025
Institute of Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, Prague, 166 07, Czech Republic.
Efficient heat dissipation is crucial for various industrial and technological applications, ensuring system reliability and performance. Advanced thermal management systems rely on materials with superior thermal conductivity and stability for effective heat transfer. This study investigates the thermal conductivity, viscosity, and stability of hybrid AlO-CuO nanoparticles dispersed in Therminol 55, a medium-temperature heat transfer fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!