A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Altered development and lignin deposition in rice p-COUMAROYL ESTER 3-HYDROXYLASE loss-of-function mutants. | LitMetric

The aromatic composition of lignin greatly influences the potential utility of lignocellulosic biomass. Previously, we generated transgenic rice plants with altered lignin aromatic composition and enhanced biomass utilization properties by suppressing the expression of p-COUMAROYL ESTER 3-HYDROXYLASE (C3'H). While RNAi-derived C3'H-knockdown lines displayed relatively normal growth with substantially augmented levels of p-hydroxyphenyl-type lignin units, genome-edited C3'H-knockout lines exhibited severely impaired growth phenotype, leading to arrested seedling development. In this study, we further characterized the genome-edited C3'H-knockout rice by analyzing gene expression and phenolic metabolite profiles alongside phenotypic traits and cell wall lignin structure. The seedlings of the C3'H-knockout rice displayed irregular vasculature and ectopic lignification. RNA-sequencing analysis detected widespread changes in the expression of genes associated with plant growth, hormone biosynthesis and signaling, and stress responses in the C3'H-knockout rice. Overall, our data suggested that C3'H disruption activates metabolic sensor-mediated signaling pathways, which in turn regulate phenylpropanoid metabolism. In line with this, phenolic metabolite profiling of the C3'H-knockout rice revealed not only shifts in monolignol-associated phenylpropanoids but also reductions in flavonoids and salicylic acid derivatives. Moreover, changes in the aromatic composition of the mutant lignin and phenolic metabolites indicated the presence of parallel monolignol pathways enabling rice to produce guaiacyl- and syringyl-type monolignol derivatives in the absence of C3'H activity. Our findings contribute to a deeper understanding of the mechanisms underlying the growth defects of lignin-modified mutants, with implications for optimizing the utility of grass lignocellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.70039DOI Listing

Publication Analysis

Top Keywords

c3'h-knockout rice
16
aromatic composition
12
p-coumaroyl ester
8
ester 3-hydroxylase
8
genome-edited c3'h-knockout
8
phenolic metabolite
8
rice
7
lignin
6
c3'h-knockout
5
altered development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!