Understanding how zwitterionic spherical polyelectrolyte brushes (SPB) fulfill their antifouling functions requires knowledge of their interactions with exogenous nanoparticles, such as proteins. In this study, zwitterionic SPB were synthesized by grafting 3-[(2-(methacryloyloxy)ethyl)dimethylammonio]propanoate (CBMA) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) onto a polystyrene core via photoemulsion polymerization. Small-angle X-ray scattering was employed to elucidate the interactions and protein adsorption behaviors of the zwitterionic SPB and proteins. SAXS results revealed that both PCBMA SPB and PSBMA SPB exhibit minimal protein adsorption compared with cationic and anionic SPB. PSBMA SPB maintained a consistent resistance to protein adsorption across various conditions. However, PCBMA SPB demonstrated tunable protein adsorption properties, enabled by the controllable ionization of carboxyl groups on the brush chains while maintaining consistently low overall adsorption. These insights enhance our understanding of zwitterionic SPB and offer an experimental and theoretical basis for their application in biomaterials and antifouling technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c01782DOI Listing

Publication Analysis

Top Keywords

protein adsorption
16
zwitterionic spb
12
spb
9
zwitterionic spherical
8
spherical polyelectrolyte
8
polyelectrolyte brushes
8
x-ray scattering
8
understanding zwitterionic
8
pcbma spb
8
spb psbma
8

Similar Publications

The adsorption technique has opened a new frontier in the field of purification through hemodialysis. This technique has proved to be effective in removing uremic toxins previously deemed inaccessible due to their size or charge, as well as to their molecular interactions with blood proteins. In this context, this review provides a detailed explanation of the role of Polyester-polymer alloy (PEPA®) membranes and hemodiafiltration with endogenous reinfusion.

View Article and Find Full Text PDF

Background: To address the severe health risks posed by aflatoxin B (AFB) in grain, this study employed polydopamine-based atom transfer radical polymerization (p-ATRP) and cytochrome C-catalyzed atom transfer radical polymerization (c-ATRP) as cytocompatible modification techniques to coat the surface of living Lactobacillus plantarum (LAB) cells with the temperature-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm).

Results: Two novel bioadsorbents were synthesized. The incorporation of PNIPAAm as an 'AFB vacuum cleaner' layer significantly enhances LAB's adsorption efficiency and enables temperature-controlled desorption.

View Article and Find Full Text PDF

A novel label-free immunosensor for detection of VEGF using FFT admittance voltammetry.

Bioelectrochemistry

February 2025

Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.; Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran; Dept. of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada. Electronic address:

This study presents a novel, label-free electrochemical immunosensor for the detection of vascular endothelial growth factor (VEGF), a crucial tumor biomarker. The immunosensor was developed by electrochemical deposition of gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite on glassy carbon (GC) and screen-printed carbon (SPC) electrodes. A specific monoclonal antibody against VEGF was immobilized on the electrode surface through a carbodiimide coupling reaction.

View Article and Find Full Text PDF

The formation, stability, and decay of foams occur under dynamic conditions. Given their inherent complexity, an accurate description of these subprocesses necessitates an analysis of multiple factors, with a particular focus on the formation and structure of the adsorption layer. Single rising bubble techniques facilitate a deeper comprehension of the dynamics of diverse phenomena in foams, as they yield experimental data under dynamic conditions.

View Article and Find Full Text PDF

Molecular-level insights into dissolved organic matter during Ulva prolifera degradation and its regulation on the environmental behaviour of the organic pollutant tributyl phosphate.

Water Res

March 2025

Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China. Electronic address:

Macroalgal blooms have frequently occurred in coastal waters, and a large amount of algogenic dissolved organic matter (DOM) is input into seawater as macroalgae degraded. It undergoes continuous changes under microbial degradation; however, the impact of microbially-modified marine DOM on the environmental behaviour of organic pollutants remains underexplored. This study focused on Ulva prolifera, the dominant species in green tides, and investigated the molecular diversity of DOM from U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!