Neural biomarkers that can classify or predict disease are of broad interest to the neurological and psychiatric communities. Such biomarkers can be informative of disease state or treatment efficacy, even before there are changes in symptoms and/or behavior. This work investigates EEG-estimated functional connectivity (FC) as a Parkinson's Disease (PD) biomarker. Specifically, we investigate FC mediated via neural oscillations and consider such activity during the Simons conflict task. This task yields sensory-motor conflict, and one might expect differences in behavior between PD patients and healthy controls (HCs). In addition to considering spatially focused approaches, such as FC, as a biomarker, we also consider temporal biomarkers, which are more sensitive to ongoing changes in neural activity. We find that FC, estimated from delta (1-4Hz) and theta (4-7Hz) oscillations, yields spatial FC patterns significantly better at distinguishing PD from HC than temporal features or behavior. This study reinforces that FC in spectral bands is informative of differences in brain-wide processes and can serve as a biomarker distinguishing normal brain function from that seen in disease.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC53108.2024.10781499DOI Listing

Publication Analysis

Top Keywords

eeg-estimated functional
8
functional connectivity
8
conflict task
8
behavior
4
connectivity behavior
4
behavior differentiates
4
differentiates parkinson's
4
parkinson's patients
4
patients health
4
health controls
4

Similar Publications

Neural biomarkers that can classify or predict disease are of broad interest to the neurological and psychiatric communities. Such biomarkers can be informative of disease state or treatment efficacy, even before there are changes in symptoms and/or behavior. This work investigates EEG-estimated functional connectivity (FC) as a Parkinson's Disease (PD) biomarker.

View Article and Find Full Text PDF

Classifying mental stress is important as it helps in identifying the type and severity of stress, which can inform the most appropriate treatment or intervention. In this study, we propose utilizing electroencephalography (EEG) signals with convolutional neural networks (CNNs) to classify four mental states: rest, control-alert, stress and stress mitigation. The mental stress state was induced using Stroop color word test (SCWT) with time constrains and was then mitigated using 16 Hz Binaural beat stimulation (BBs).

View Article and Find Full Text PDF

Early detection of mental stress is particularly important in prolonged space missions. In this study, we propose utilizing electroencephalography (EEG) with multiple machine learning models to detect elevated stress levels during a 240-day confinement. We quantified the levels of stress using alpha amylase levels, reaction time (RT) to stimuli, accuracy of target detection, and functional connectivity of EEG estimated by Phase Locking Value (PLV).

View Article and Find Full Text PDF

Corticospinal excitability is highest at the early rising phase of sensorimotor µ-rhythm.

Neuroimage

February 2023

Department of Neurology & Stroke, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Trento, Italy.

Alpha oscillations are thought to reflect alternating cortical states of excitation and inhibition. Studies of perceptual thresholds and evoked potentials have shown the scalp EEG negative phase of the oscillation to correspond to a short-lasting low-threshold and high-excitability state of underlying visual, somatosensory, and primary motor cortex. The negative peak of the oscillation is assumed to correspond to the state of highest excitability based on biophysical considerations and considerable effort has been made to improve the extraction of a predictive signal by individually optimizing EEG montages.

View Article and Find Full Text PDF

Background: Recent studies have found bi-directional relations between stress and sleep. However, few studies have examined the daily associations between stress and electroencephalography (EEG) measured sleep.

Purpose: This study examined the temporal associations between repeated ecological momentary assessments of stress and EEG-estimated sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!