A physiologically based computational framework was used to develop a novel gastric motility network model. Along with the widely assumed electrical gap junction coupling between the pacemaker and muscle cells as well as the second messenger molecules, in this model we also included a rostro-caudal linear decreasing gradient of neural stimulus to the pacemakers along the length of the stomach to mimic enteric neurotransmitter release and an increasing gradient of muscarinic receptor density. We find that aberrant responses of different parts of the stomach (corpus, antrum etc.) to exogenous application of excitatory neurotransmitters such as Acetylcholine, can be explained by an interplay between the level of neurotransmitter and density of receptors available. This model can also explain anomalous behavior such as retrograde propagation and functional uncoupling in the entire stomach in response to external neuro-agonists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC53108.2024.10782571 | DOI Listing |
Orthop Surg
March 2025
Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
Recent literature has increasingly demonstrated the significant function of autonomic nerves in regulating physiological and pathological changes associated with the skeletal system. Extensive studies have been conducted to understand the contribution of the autonomic nervous system (ANS) to skeletal metabolic homeostasis and resistance to aseptic inflammation, specifically from the viewpoint of skeletal neurobiology. There have been plenty of studies on how the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS), the two main branches of the ANS, regulate bone remodeling, which is the process of bone formation and resorption.
View Article and Find Full Text PDFJ Neuroinflammation
March 2025
College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
Chronic urticaria (CU) arises from a multifaceted interplay of immunological, neurological, and psychological components. Immune dysregulation, mediated through both immunoglobulin E (IgE)-dependent and IgE-independent pathways, plays a pivotal role in CU pathogenesis, involving key effector cells such as mast cells (MCs), basophils, and eosinophils. This dysregulation culminates in the release of histamine, prostaglandins, and other mediators, which precipitate pruritus.
View Article and Find Full Text PDFPharmacol Rep
March 2025
Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
Background: A number of rodent studies have investigated the effects of alcohol (ethanol) administration on the catecholaminergic neurotransmitters, norepinephrine (NE) and dopamine (DA). These studies suggest that presentation of alcohol to mice or rats can alter brain levels of NE and DA, in various subregions. Other studies have presented the hypothesis that there may be an unidentified pathway in rodents, and other organisms, that actually transforms ethanol to NE or DA.
View Article and Find Full Text PDFEur J Neurosci
March 2025
Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Motor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented.
View Article and Find Full Text PDFJ Neurochem
March 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!