Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
SEGSRNet addresses the challenge of precisely identifying surgical instruments in low-resolution stereo endoscopic images, a common issue in medical imaging and robotic surgery. Our innovative framework enhances image clarity and segmentation accuracy by applying state-of-the-art super-resolution techniques before segmentation. This ensures higher-quality inputs for more precise segmentation. SEGSRNet combines advanced feature extraction and attention mechanisms with spatial processing to sharpen image details, which is significant for accurate tool identification in medical images. Our proposed model, SEGSRNet, surpasses existing models in evaluation metrics including PSNR and SSIM for super-resolution tasks, as well as IoU and Dice Score for segmentation. SEGSRNet can provide image resolution and precise segmentation which can significantly enhance surgical accuracy and patient care outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC53108.2024.10782794 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!