The most discriminative and revealing patterns in the neuroimaging population are often confined to smaller subdivisions of the samples and features. Especially in neuropsychiatric conditions, symptoms are expressed within micro subgroups of individuals and may only underly a subset of neurological mechanisms. As such, running a whole-population analysis yields suboptimal outcomes leading to reduced specificity and interpretability. Biclustering is a potential solution since subject heterogeneity makes one-dimensional clustering less effective in this realm. Yet, high dimensional sparse input space and semantically incoherent grouping of attributes make post hoc analysis challenging. Therefore, we propose a deep neural network called semantic locality preserving auto decoder (SpaDE), for unsupervised feature learning and biclustering. SpaDE produces coherent subgroups of subjects and neural features preserving semantic locality and enhancing neurobiological interpretability. Also, it regularizes for sparsity to improve representation learning. We employ SpaDE on human brain connectome collected from schizophrenia (SZ) and healthy control (HC) subjects. The model outperforms several state-of-the-art biclustering methods. Our method extracts modular neural communities showing significant (HC/SZ) group differences in distinct brain networks including visual, sensorimotor, and subcortical. Moreover, these bi-clustered connectivity substructures exhibit substantial relations with various cognitive measures such as attention, working memory, and visual learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC53108.2024.10782417 | DOI Listing |
Annu Int Conf IEEE Eng Med Biol Soc
July 2024
The most discriminative and revealing patterns in the neuroimaging population are often confined to smaller subdivisions of the samples and features. Especially in neuropsychiatric conditions, symptoms are expressed within micro subgroups of individuals and may only underly a subset of neurological mechanisms. As such, running a whole-population analysis yields suboptimal outcomes leading to reduced specificity and interpretability.
View Article and Find Full Text PDFInt J Neural Syst
April 2025
School of Mechanical Engineering and Automation, Northeastern University, Wenhua Road, Shen Yang, Liao Ning, P. R. China.
Since vision transformers excel at establishing global relationships between features, they play an important role in current vision tasks. However, the global attention mechanism restricts the capture of local features, making convolutional assistance necessary. This paper indicates that transformer-based models can attend to local information without using convolutional blocks, similar to convolutional kernels, by employing a special initialization method.
View Article and Find Full Text PDFPeerJ Comput Sci
October 2024
School of Business Administration, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China.
Tourism demand projection is paramount for both corporate operations and destination management, facilitating tourists in crafting bespoke, multifaceted itineraries and enriching their vacation experiences. This study proposes a multi-layer self attention mechanism recommendation algorithm based on dynamic spatial perception, with the aim of refining the analysis of tourists' emotional inclinations and providing precise estimates of tourism demand. Initially, the model is constructed upon a foundation of multi-layer attention modules, enabling the semantic discovery of proximate entities to the focal scenic locale and employing attention layers to consolidate akin positions, epitomizing them through contiguous vectors.
View Article and Find Full Text PDFNeural Netw
December 2024
College of Big Data and Information Engineering, Guizhou University, Guiyang, China.
Amidst advancements in feature extraction techniques, research on multi-view multi-label classifications has attracted widespread interest in recent years. However, real-world scenarios often pose a challenge where the completeness of multiple views and labels cannot be ensured. At present, only a handful of techniques have attempted to address the complex issue of partial multi-view incomplete multi-label classification, and the majority of these approaches overlook the significance of manifold structures between instances.
View Article and Find Full Text PDFColorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!