Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Functional Magnetic Resonance Imaging (fMRI) serves as a unique non-invasive tool for investigating brain function by analyzing blood oxygenation level-dependent (BOLD) series. These signals result from the complex interplay between deterministic and stochastic components underpinning biological brain activity. In this context, the quantification of the stochastic component, here defined as brain noise, is challenging without making assumptions on the deterministic dynamics. Leveraging on Approximate Entropy, in this study we present a methodological framework aimed to estimate intrinsic stochastic brain dynamics through fMRI data analysis without making assumption on the deterministic model. We estimated brain noise from fMRI series of 200 participants from the publicly available Cam-CAN dataset, aiming to quantify the amount of stochastic dynamics in different brain regions. Moreover, we hypothesize that a functional relationship exists between intrinsic brain noise and subject's age. Results indicate that a significant part - approximately 18% to 60% - of the fMRI signal power can be attributed to the intrinsic stochastic dynamics within the brain, and a linear augmentation is reported in association with the maturation process. These findings underscore the physiological importance of characterizing neural noise and its unique distributions across various brain regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC53108.2024.10782065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!