Background: Dengue encephalitis, a severe neurological complication of dengue virus infection, is increasingly recognized for its rising incidence and significant public health burden. Despite its growing prevalence, the underlying mechanisms and effective therapeutic strategies remain poorly understood.
Methods: Cellular atlas of dengue encephalitis was determined by single-nucleus RNA sequencing. Viral load of dengue virus and the level of cytokines expression was detected by RT-qPCR. The target cells of dengue virus were verified by immunofluorescence. The cytotoxic effect of CD8 T cell was determined by flow cytometry, immunofluorescence, in vivo CD8 T cell depletion, adoptive transfer and CCK-8-based cell viability assay. Axonal and synaptic reduction induced by dengue virus infection was demonstrated by RT-qPCR, Western blot, transmission electron microscope and immunofluorescence. Finally, motor and sensory functions of mice were detected by open field test and hot plate test, respectively.
Results: In this study, we utilized single-nucleus RNA sequencing on brain tissues from a dengue-infected murine model to construct a comprehensive cellular atlas of dengue encephalitis. Our findings identify neurons, particularly inhibitory GABAergic subtypes, as the primary targets of dengue virus. Additionally, immune cell infiltration was observed, contributing to significant neurological damage. Comprehensive analyses of cell-cell communication, combined with CD8 T cell depletion and transfer restoration experiments, have elucidated the critical role of CD8 T cells in triggering encephalitis through their interaction with neurons. These cells infiltrate the brain from peripheral circulation, interact with neurons, and induce damage of synapse and axon, accompanied by neurological dysfunction.
Conclusion: We defined cellular atlas of dengue encephalitis in mouse model and identified the primary target neuron of dengue virus. In addition, we demonstrated the significant cytotoxic effect of CD8 T cell, which leads to apoptosis of neuron and neurological dysfunction of mice. Our study provides a molecular and cellular framework for understanding dengue encephalitis through advanced sequencing technologies. The insights gained serve as a foundation for future investigations into its pathogenesis and the development of targeted therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877810 | PMC |
http://dx.doi.org/10.1186/s12974-025-03383-w | DOI Listing |
Cells
February 2025
Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany.
Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis.
View Article and Find Full Text PDFFront Microbiol
February 2025
Laboratory of molecular studies of the Orinoquian region- LEMO, Facultad de Ciencias, Universidad Internacional del Trópico Americano, Universidad Internacional del Trópico Americano, Yopal, Colombia.
Studies focused on the epidemiological surveillance of arboviruses that cause potentially zoonotic diseases, such as dengue, Zika, or emerging viruses like West Nile virus (WNV), are critical due to their significant impact on public health. Although research on these infectious agents is increasing in Colombia, regions remain where the presence of zoonotic agents is still unknown. To address this knowledge gap, the present study aimed to investigate the current status of WNV circulation in wildlife in two municipalities of the department of Casanare (El Yopal and Paz de Ariporo) from the Colombian region of Orinoquia.
View Article and Find Full Text PDFMed Trop Sante Int
December 2024
Président de la SFMTSI, SFMTSI Société francophone de médecine tropicale et santé internationale (ancienne SPE), Hôpital Pitié-Salpêtrière, Pavillon Laveran, 47-83 Boulevard de l'Hôpital, 75651 Paris cedex 13, France.
Dengue fever is spreading rapidly around the world, affecting nearly half the world's population. Causes include urbanization, human mobility, climate change and the spread of mosquito vectors such as In 2023 and 2024, there was a marked increase in cases and deaths worldwide. In mainland France, the increase in imported cases has generated local transmissions.
View Article and Find Full Text PDFFront Epidemiol
February 2025
Department of Internal Medicine, Howard University, Washington, DC, United States.
Introduction: Dengue fever, traditionally a tropical disease, has shown a notable increase in incidence within the United States over recent decades. This paper focuses on the increase in dengue fever cases in Maryland during increasing temperature and humidity and the expanding geographical range of Aedes mosquitoes, the primary vectors for dengue virus transmission.
Methods: Electronic health data was used to identify patterns in dengue incidence from 2014 to 2024.
J Biomol Struct Dyn
March 2025
Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
Dengue is a major global health challenge, caused by the dengue virus (DENV) and transmitted through the mosquito. The four DENV serotypes (DENV1-4) infect about 400 million people annually. The non-structural protein 5 (NS5) is the most conserved DENV protein, crucial for viral replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!