Background: Homologous recombination deficiency (HRD) refers to the dysfunction of homologous recombination repair (HRR) at the cellular level. The assessment of HRD status has the important significance for the formulation of treatment plans, efficacy evaluation, and prognosis prediction of patients with ovarian cancer.

Objectives: This study aimed to construct a deep learning-based classifier for identifying tumor regions from whole slide images (WSIs) and stratify the HRD status of patients with ovarian cancer (OC).

Methods: The deep learning models were trained on 205 H&E-stained sections which contained 205 ovarian cancer patients, 64 were found to have HRD status while 141 had homologous recombination proficiency (HRP) status from two institutions Memorial Sloan Kettering Cancer Center (MSKCC) and Zhongda Hospital, Southeast University. The framework includes tumor regions identification by UNet + + and subtypes of ovarian cancer classifier construction. Referring to the EasyEnsemble, we classified the HRP patients into three distributed subsets. These three subsets of HRP patients were combined with the HRD patients to establish three new training groups for subsequent model construction. The three models were integrated into a single model named Ensemble Model.

Results: The UNet + + algorithm segmented tumor regions with 81.8% accuracy, 85.9% recall, 83.8% dice score and 68.3% IoU. The AUC of the Ensemble Model was 0.769 (Precision = 0.800, Recall = 0.727, F1-score = 0.762) in the study. The most discriminative features between HRD and HRP comprised S_mean_dln_obtuse_ratio, S_mean_dln_acute_ratio and mean_Graph_T-S_Betweenness_normed.

Conclusions: The models we constructed enables accurate discrimination between tumor and non-tumor tissues in ovarian cancer as well as the prediction of HRD status for patients with ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877705PMC
http://dx.doi.org/10.1186/s12967-025-06234-7DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
hrd status
20
homologous recombination
16
patients ovarian
12
tumor regions
12
recombination deficiency
8
hrd
8
deficiency hrd
8
deep learning
8
slide images
8

Similar Publications

Heterogeneous cellular responses to hyperthermia support combined intraperitoneal hyperthermic immunotherapy for ovarian cancer mouse models.

Sci Transl Med

March 2025

Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.

The benefit of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer remains controversial, hindering the development of rational combination therapies based on hyperthermia (HT). This study reports the preliminary results of the neoadjuvant HIPEC (NHIPEC) trial (ChiCTR2000038173), demonstrating enhanced tumor response in high-grade serous ovarian cancer with NHIPEC. Through single-cell RNA sequencing analysis, we identified both homogeneous and heterogeneous cellular responses to HT within the tumor and microenvironment.

View Article and Find Full Text PDF

Background: Prior studies of participants with breast and other obesity-associated cancers in the Women's Health Initiative (WHI) showed worse mortality and cardiovascular disease (CVD) outcomes for individuals with a higher number of cardiometabolic risk factors at study entry. The purpose of this analysis is to compare the relationship between cardiometabolic abnormalities and mortality among women with and without cancer in the WHI.

Methods: Women with one of five early-stage obesity-associated cancers (breast, colorectal, endometrial, ovarian, and non-Hodgkin lymphoma) and controls without any new or prior history of cancer were selected from the WHI-Life and Longevity after Cancer ancillary study.

View Article and Find Full Text PDF

Re-Evaluating the Use of Glyphosate-based Herbicides: Implications on Fertility.

Reprod Sci

March 2025

Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.

Glyphosate-based herbicides (GBHs) are the most widely used herbicides in the United States, accounting for 19% of estimated global use. Although the Environmental Protection Agency (EPA) has reaffirmed that the active ingredient glyphosate (GLY) is safe for humans, recent studies on exposure have suggested association with cancer, metabolic disorders, endocrine disruption and infertility, Alzheimer's and Parkinson's disease, and psychological disorders. Current literature on the effects of GLY exposure on reproductive function suggests potential clinical implications on women's reproductive health, including polycystic ovarian syndrome (PCOS), endometriosis, infertility, and adverse pregnancy outcomes.

View Article and Find Full Text PDF

Endometriosis and cancer risk.

Eur J Cancer Prev

March 2025

Department of Oncology and Hemato-Oncology, University of Milan.

Endometriosis is one of the most common gynecological benign disease. Epidemiological evidence suggests a potential association between endometriosis and cancer risk. Accumulating evidence highlighted the risk of ovarian cancer, particularly endometrioid and clear cell subtypes.

View Article and Find Full Text PDF

Ovarian cancer survival depends strongly on the time of diagnosis. Detection at stage 1 must be the goal of liquid biopsies for ovarian cancer detection. We report the development and validation of graphene-based optical nanobiosensors (G-NBSs) that quantify the activities of a panel of proteases, which were selected to provide a crowd response that is specific for ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!