In this article, we discuss the qualitative analysis and develop an optimal control mechanism to study the dynamics of the novel coronavirus disease (2019-nCoV) transmission using an epidemiological model. With the help of a suitable mathematical model, health officials often can take positive measures to control the infection. To develop the model, we assume two disease transmission sources (humans and reservoirs) keeping in view the characteristics of novel coronavirus transmission. We formulate the model to study the temporal dynamics and determine an optimal control mechanism to minimize the infected population and control the spreading of the novel coronavirus disease propagation. In addition, to understand the significance of each model parameter, we compute the threshold quantity and perform the sensitivity analysis of the basic reproductive number. Based on the temporal dynamics of the model and sensitivity analysis of the threshold parameter, we develop a control mechanism to identify the best control policy for eradicating the disease. We then conduct numerical experiments using large-scale numerical simulations to validate the theoretical findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880544PMC
http://dx.doi.org/10.1038/s41598-025-90915-2DOI Listing

Publication Analysis

Top Keywords

optimal control
12
control mechanism
12
novel coronavirus
12
coronavirus disease
8
temporal dynamics
8
sensitivity analysis
8
control
7
model
6
dynamical analysis
4
analysis numerical
4

Similar Publications

Climate change, driven by greenhouse gas emissions, has emerged as a pressing global ecological and environmental challenge. Our study is dedicated to exploring the various factors influencing greenhouse gas emissions from animal husbandry and predicting their future trends. To this end, we have analyzed data from China's Inner Mongolia Autonomous Region spanning from 1978 to 2022, aiming to estimate the carbon emissions associated with animal husbandry in the region.

View Article and Find Full Text PDF

Background: Ventilator-associated pneumonia (VAP) is a frequent and severe complication among newborns in neonatal intensive care units (NICUs). It is associated with elevated morbidity and mortality rates, more extended hospital stays and increased health care costs. Implementing preventive care bundles and structured sets of evidence-based practices reduces VAP incidence.

View Article and Find Full Text PDF

Inspired by the "Salvinia effect", a novel method for fabricating a magneto-responsive superhydrophobic surface coated with a cluster-distributed cilia array (CC-MRSS) was reported. This surface features a magnetically self-assembled nonuniform microcilia array and demonstrates exceptional microdroplet hydrophobicity, magnetic-responsive wettability, and corrosion resistance. The fabrication process involved mixing polydimethylsiloxane (PDMS) and carbonyl iron powders (CIPs), followed by dividing the mixture into two parts.

View Article and Find Full Text PDF

Background: To demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.

Methods: Using data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.

Results: Spatial patterns in population immunity to SARS-CoV-2 varied across the DR.

View Article and Find Full Text PDF

Background: Stroke is a leading cause of long-term disability, often resulting in upper extremity dysfunction. Traditional rehabilitation methods often face challenges such as limited patient access to resources and lack of sustained motivation. Home-based virtual reality (VR) training is gaining traction as an innovative, sustainable and interactive alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!